Client–server modelThe client–server model is a distributed application structure that partitions tasks or workloads between the providers of a resource or service, called servers, and service requesters, called clients. Often clients and servers communicate over a computer network on separate hardware, but both client and server may reside in the same system. A server host runs one or more server programs, which share their resources with clients. A client usually does not share any of its resources, but it requests content or service from a server.
MAC addressA media access control address (MAC address) is a unique identifier assigned to a network interface controller (NIC) for use as a network address in communications within a network segment. This use is common in most IEEE 802 networking technologies, including Ethernet, Wi-Fi, and Bluetooth. Within the Open Systems Interconnection (OSI) network model, MAC addresses are used in the medium access control protocol sublayer of the data link layer.
IPv6 addressAn Internet Protocol Version 6 address (IPv6 address) is a numeric label that is used to identify and locate a network interface of a computer or a network node participating in a computer network using IPv6. IP addresses are included in the packet header to indicate the source and the destination of each packet. The IP address of the destination is used to make decisions about routing IP packets to other networks. IPv6 is the successor to the first addressing infrastructure of the Internet, Internet Protocol version 4 (IPv4).
Workflow management systemA workflow management system (WfMS or WFMS) provides an infrastructure for the set-up, performance and monitoring of a defined sequence of tasks, arranged as a workflow application. There are several international standards-setting bodies in the field of workflow management: Workflow Management Coalition World Wide Web Consortium Organization for the Advancement of Structured Information Standards WS-BPEL 2.0 (integration-centric) and WS-BPEL4People (human task-centric) published by OASIS Standards Body.
Address spaceIn computing, an address space defines a range of discrete addresses, each of which may correspond to a network host, peripheral device, disk sector, a memory cell or other logical or physical entity. For software programs to save and retrieve stored data, each datum must have an address where it can be located. The number of address spaces available depends on the underlying address structure, which is usually limited by the computer architecture being used.
Link-local addressIn computer networking, a link-local address is a unicast network address that is valid only for communications within the subnetwork that the host is connected to. Link-local addresses are most often assigned automatically with a process known as stateless address autoconfiguration or link-local address autoconfiguration, also known as automatic private IP addressing (APIPA) or auto-IP. Link-local addresses are not guaranteed to be unique beyond their network segment.
Physical addressIn computing, a physical address (also real address, or binary address), is a memory address that is represented in the form of a binary number on the address bus circuitry in order to enable the data bus to access a particular storage cell of main memory, or a register of memory-mapped I/O device. In a computer supporting virtual memory, the term physical address is used mostly to differentiate from a virtual address.
Network address translationNetwork address translation (NAT) is a method of mapping an IP address space into another by modifying network address information in the IP header of packets while they are in transit across a traffic routing device. The technique was originally used to bypass the need to assign a new address to every host when a network was moved, or when the upstream Internet service provider was replaced, but could not route the network's address space. It has become a popular and essential tool in conserving global address space in the face of IPv4 address exhaustion.
Resource depletionResource depletion is the consumption of a resource faster than it can be replenished. Natural resources are commonly divided between renewable resources and non-renewable resources (see also mineral resource classification). Use of either of these forms of resources beyond their rate of replacement is considered to be resource depletion. The value of a resource is a direct result of its availability in nature and the cost of extracting the resource, the more a resource is depleted the more the value of the resource increases.
ResourceResource refers to all the materials available in our environment which are technologically accessible, economically feasible and culturally sustainable and help us to satisfy our needs and wants. Resources can broadly be classified upon their availability — they are classified into renewable and non-renewable resources. They can also be classified as actual and potential on the basis of the level of development and use, on the basis of origin they can be classified as biotic and abiotic, and on the basis of their distribution, as ubiquitous and localised (private, community-owned, national and international resources).