Time-resolved Rayleigh scattering of excitons: Evidence for level repulsion in a disordered system
Related publications (37)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
With the development of quantum optics, photon correlations acquired a prominent role as a tool to test our understanding of physics, and played a key role in verifying the validity of quantum mechanics. The spatial and temporal correlations in a light fie ...
We introduce the task of action-driven stochastic human motion prediction, which aims to predict multiple plausible future motions given a sequence of action labels and a short motion history. This differs from existing works, which predict motions that ei ...
Accurate simulations of molecular quantum dynamics are crucial for understanding numerous natural processes and experimental results. Yet, such high-accuracy simulations are challenging even for relatively simple systems where the Born-Oppenheimer approxim ...
Agent-based simulations have been widely applied in many disciplines, by scientists and engineers alike. Scientists use agent-based simulations to tackle global problems, including alleviating poverty, reducing violence, and predicting the impact of pandem ...
Low-level light detection with high spatial and timing accuracy is a growing area of interest by virtue of applications such as light detection and ranging (LiDAR), biomedical imaging, time-resolved Raman spectroscopy, and quantum applications. Single-phot ...
Atomistic simulations are a bottom up approach that predict properties
of materials by modelling the quantum mechanical behaviour of all electrons
and nuclei present in a system. These simulations, however, routinely assume
nuclei to be classical particles ...
This paper describes a new numerical method for the simulation of phase change phenomena between a liquid and a vapour in the presence of non-condensable gases. The method is based on an interface-tracking approach in the framework of single-fluid modellin ...
Imaginary time path-integral (PI) simulations that account for nuclear quantum effects (NQE) beyond the harmonic approximation are increasingly employed together with modern electronic-structure calculations. Existing PI methods are applicable to molecules ...
The reliability by which molecular motor proteins convert undirected energy input into directed motion or transport has inspired the design of innumerable artificial molecular motors. We have realized and investigated an artificial molecular motor applying ...
A single quantum of excitation of a mechanical oscillator is a textbook example of the principles of quantum physics. But mechanical oscillators, despite their pervasive presence in nature and modem technology, do not genetically exist in an excited Fock s ...