Publication

Feasible optimality implies Hack's law

Andrea Rinaldo
1998
Journal paper
Abstract

We analyze the elongation (the scaling properties of drainage area with mainstream length) in optimal channel networks (OCNs) obtained through different algorithms searching for the minimum of a functional computing the total energy dissipation of the drainage system. The algorithms have different capabilities to overcome the imprinting of initial and boundary conditions, and thus they have different chances of attaining the global optimum. We find that suboptimal shapes, i.e., dynamically accessible states characterized by locally stationary total potential energy, show the robust type of elongation that is consistently observed in nature. This suggestive and directly measurable property is not found in the so-called ground state, i.e., the global minimum, whose features, including elongation, are known exactly. The global minimum is shown to be too regular and symmetric to be dynamically accessible in nature, owing to features and constraints of erosional processes. Thus Hack's law is seen as a signature of feasible optimality thus yielding further support to the suggestion that optimality of the system as a whole explains the dynamic origin of fractal forms in nature.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Dynamical system
In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space, such as in a parametric curve. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a pipe, the random motion of particles in the air, and the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured.
Drainage system (geomorphology)
In geomorphology, drainage systems, also known as river systems, are the patterns formed by the streams, rivers, and lakes in a particular drainage basin. They are governed by the topography of land, whether a particular region is dominated by hard or soft rocks, and the gradient of the land. Geomorphologists and hydrologists often view streams as part of drainage basins (and sub-basins). This is the topographic region from which a stream receives runoff, throughflow, and its saturated equivalent, groundwater flow.
Drainage basin
A drainage basin is an area of land where all flowing surface water converges to a single point, such as a river mouth, or flows into another body of water, such as a lake or ocean. A basin is separated from adjacent basins by a perimeter, the drainage divide, made up of a succession of elevated features, such as ridges and hills. A basin may consist of smaller basins that merge at river confluences, forming a hierarchical pattern. Other terms for a drainage basin are catchment area, catchment basin, drainage area, river basin, water basin, and impluvium.
Show more
Related publications (49)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.