Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we consider nearshore processes with an e ...
Salt marshes are important intertidal wetlands strongly influenced by interactions between surface water and groundwater. Bordered by coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, com ...
Riparian and in-bed vegetation growth and erosion dynamics are strongly coupled with river hydrologic and morphodynamic processes. Many field observations documented the engineering role of vegetation and its contribution to build, stabilize and control er ...
Wind wave-induced erosional effects are among the chief landscape-forming processes in tidal biomorphodynamics. Wave-driven bottom erosion, in fact, controls the equilibrium elevation and dynamics of subtidal and tidal flat surfaces, and the impact of wave ...
In environments affected by wind erosion, plants act as traps for aeolian sediment, which leads to a small-scale mosaic of depositional and erosional sediment transport regimes. This wind tunnel study used colored sand to visualize spatial patterns of sedi ...
Wetting and drying due to tidal fluctuations affect soil conditions and hence plant growth in tidal marshes. Here, a coupled one-dimensional model was developed to simulate interacting groundwater flow and plant growth in these wetlands. The simulation res ...
Aims: Classification of vegetation is an essential tool to describe, understand, predict and manage biodiversity. Given the multiplicity of approaches to classify vegetation, it is important to develop international consensus around a set of general guidel ...
Coastal 3D nearshore processes were considered with an emphasis on the effects of oceanic forcing and beach characteristics on sediment transport in both cross- and alongshore directions, as well as on foreshore bathymetry changes. In our numerical experim ...
Several research investigations have explored the interaction between morphodynamic and vegetation growth processes from both the modelling and the experimental viewpoints. Results have mainly been concerned with morphologic analyses of the effects of vege ...
Intertidal wetlands such as salt marshes are complex hydrological systems characterized by strong, dynamic interactions between coastal surface water and groundwater, driven particularly by tides. We simulated such interactions with a focus on 3D, variably ...