Meta-learning (computer science)Meta learning is a subfield of machine learning where automatic learning algorithms are applied to metadata about machine learning experiments. As of 2017, the term had not found a standard interpretation, however the main goal is to use such metadata to understand how automatic learning can become flexible in solving learning problems, hence to improve the performance of existing learning algorithms or to learn (induce) the learning algorithm itself, hence the alternative term learning to learn.
Database normalizationDatabase normalization or database normalisation (see spelling differences) is the process of structuring a relational database in accordance with a series of so-called normal forms in order to reduce data redundancy and improve data integrity. It was first proposed by British computer scientist Edgar F. Codd as part of his relational model. Normalization entails organizing the columns (attributes) and tables (relations) of a database to ensure that their dependencies are properly enforced by database integrity constraints.
Product (category theory)In , the product of two (or more) in a is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces. Essentially, the product of a family of objects is the "most general" object which admits a morphism to each of the given objects.
Empty productIn mathematics, an empty product, or nullary product or vacuous product, is the result of multiplying no factors. It is by convention equal to the multiplicative identity (assuming there is an identity for the multiplication operation in question), just as the empty sum—the result of adding no numbers—is by convention zero, or the additive identity. When numbers are implied, the empty product becomes one. The term empty product is most often used in the above sense when discussing arithmetic operations.
Data domainIn data management and database analysis, a data domain is the collection of values that a data element may contain. The rule for determining the domain boundary may be as simple as a data type with an enumerated list of values. For example, a database table that has information about people, with one record per person, might have a "marital status" column. This column might be declared as a string data type, and allowed to have one of two known code values: "M" for married, "S" for single, and NULL for records where marital status is unknown or not applicable.