Publication

Improving biometric verification with class-independent quality information

Abstract

Existing approaches to biometric classification with quality measures make a clear distinction between the single-modality applications and the multi-modal scenarios. This study bridges this gap with Q-stack, a stacking-based classifier ensemble, which uses the class-independent signal quality measures and baseline classifier scores in order to improve the accuracy of uni- and multi-modal biometric classification. The seemingly counterintuitive notion of using class-independent quality information for improving class separation by considering quality measures as conditionally relevant classification features is explained. The authors present Q-stack as a generalised framework of classification with quality information, and argue that existing methods of classification with quality measures are its special cases. The authors further demonstrate the application of Q-stack on the task of biometric identity verification using face and fingerprint modalities, and show that the use of the proposed technique allows a systematic reduction of the error rates below those of the baseline classifiers, in scenarios involving single and multiple biometric modalities.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.