Publication

Quaternary structure, protein dynamics, and synaptic function of SAP97 controlled by L27 domain interactions

Hilal Lashuel
2004
Journal paper
Abstract

Single-particle electron microscopy (EM) combined with biochemical measurements revealed the molecular shape of SAP97 and a monomer-dimer transition that depended on the N-terminal L27 domain. Overexpression of SAP97 drove GluR1 to synapses, potentiated AMPA receptor (AMPAR) excitatory postsynaptic currents (EPSCs), and occluded LTP. Synaptic potentiation and GluR1 delivery were dissociable by L27 domain mutants that inhibit multimerization of SAP97. Loss of potentiation was correlated with faster turnover of monomeric SAP97 mutants in dendritic spines. We propose that L27-mediated interactions of SAP97 with itself or other proteins regulate the synaptic delivery of AMPARs. RNAi knockdown of endogenous PSD-95 depleted surface GluR1 and impaired AMPA EPSCs. In contrast, RNAi knockdown of endogenous SAP97 reduced surface expression of both GluR1 and GluR2 and inhibited both AMPA and NMDA EPSCs. Thus SAP97 has a broader role than its close relative, PSD-95, in the maintenance of synaptic function.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.