Publication

Modulation of electron transport during Swing ECCD discharges in TCV

Abstract

Generation of a swing electron cyclotron current drive (swing ECCD), i.e. driving alternated, symmetric, positive or negative local ECCD, during a single discharge and at constant total input EC power, was performed at the Tokamak a Configuration Variable (TCV). The electron temperature is observed to be modulated inside the deposition radius, implying modulation of the electron transport properties. The modulation of ECCD is the only actuator for the observed modifications in the electron transport properties. These exhibit inverted behaviors depending on the deposition location of the co- and counter-ECCD. At more on-axis depositions, swing ECCD results in a higher electron temperature during the co- ECCD phase, whereas at more off-axis depositions, the electron temperature is higher during the counter-ECCD phase. Transport modeling of these discharges shows that the local electron tranport behavior depends on the value of the modulated magnetic shear. The results are transport model independent, confirming the robustness of the magnetic shear modeling, and indicating that the main contribution is due to the ECCD. Moreover, the results are consistent with predictions from gyrokinetic simulations, that the local electron confinement is proportional to the magnetic shear at low shear and inversely at high shear values, s greater than or similar to 1.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Free electron model
In solid-state physics, the free electron model is a quantum mechanical model for the behaviour of charge carriers in a metallic solid. It was developed in 1927, principally by Arnold Sommerfeld, who combined the classical Drude model with quantum mechanical Fermi–Dirac statistics and hence it is also known as the Drude–Sommerfeld model.
Electron mobility
In solid-state physics, the electron mobility characterises how quickly an electron can move through a metal or semiconductor when pulled by an electric field. There is an analogous quantity for holes, called hole mobility. The term carrier mobility refers in general to both electron and hole mobility. Electron and hole mobility are special cases of electrical mobility of charged particles in a fluid under an applied electric field. When an electric field E is applied across a piece of material, the electrons respond by moving with an average velocity called the drift velocity, .
Electron
The electron (_Electron or _beta-) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron's mass is approximately 1/1836 that of the proton. Quantum mechanical properties of the electron include an intrinsic angular momentum (spin) of a half-integer value, expressed in units of the reduced Planck constant, ħ.
Show more
Related publications (35)

Multi-machine benchmark of the self-consistent 1D scrape-off layer model DIV1D from stagnation point to target with SOLPS-ITER

Holger Reimerdes

This paper extends a 1D dynamic physics-based model of the scrape-off layer (SOL) plasma, DIV1D, to include the core SOL and possibly a second target. The extended model is benchmarked on 1D mapped SOLPS-ITER simulations to find input settings for DIV1D th ...
Bristol2024

Optimization of X-mode electron cyclotron current drive in high-electron-temperature plasma in the EAST tokamak

Joan Decker, Chunmin Zhang, Fang Liu

A discharge with electron temperature up to 14 keV has been achieved in EAST. Analysis of the electron cyclotron current drive (ECCD) efficiency at high electron temperature under EAST parameters is presented using C3PO/LUKE code. Simulation results show t ...
IOP Publishing Ltd2023

Experimental and numerical investigations of electron transport enhancement by electron-cyclotron plasma-wave interaction in tokamaks

Stefano Coda, Laurent Villard, Laurie Porte, Joan Decker, Giovanni Di Giannatale, Aylwin Iantchenko, Jean Arthur Cazabonne

Energy transfer from electron-cyclotron (EC) waves to the plasma is being routinely used in tokamaks to heat and drive current through the electron channel. Technical applications such as magnetohydrodynamic mode mitigation require power deposition with a ...
IOP Publishing Ltd2023
Show more
Related MOOCs (15)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.