Dispersion-Corrected Atom-Centered Potentials for Phosphorous
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Extracting reliable thermochemical parameters from molecular dynamics simulations of chemical reactions, although based on ab initio methods, is generally hampered by difficulties in reproducing the results and controlling the statistical errors. This is a ...
Challenging ground and excited state problems in the chemistry of common organic chromophores are investigated with state-of-the-art quantum chemical methods. We present a comprehensive excited state molecular dynamics analysis of (a) fundamental building ...
In this work, we present the main features and algorithmic details of a novel implementation of the frozen density embedding (FDE) formulation of subsystem density functional theory (DFT) that is specifically designed to enable ab initio molecular dynamics ...
Density Functional Theory (DFT) and its time-dependent extension (TDDFT) have become two of the most popular approaches for computer simulations of the electronic structure and response properties of quantum systems. A reasonable compromise between accurac ...
Kohn-Sham density functional theory offers a powerful and robust formalism for investigating the electronic structure of many-body systems while providing a practical balance of accuracy and computational cost unmatched by other methods. Despite this succe ...
Energy functionals which depend explicitly on orbital densities, rather than on the total charge density, appear when applying self-interaction corrections to density-functional theory; this is, e.g., the case for Perdew-Zunger and Koopmans-compliant funct ...
Koopmans-compliant functionals emerge naturally from extending the constraint of piecewise linearity of the total energy as a function of the number of electrons to each fractional orbital occupation. When applied to approximate density-functional theory, ...
We investigate the accuracy provided by different treatments of the exchange and correlation effects, in particular the London dispersion forces, on the properties of liquid water using ab initio molecular dynamics simulations with density functional theor ...
The description of ground state charge-transfer complexes is highly challenging. Illustrative examples include large overestimations of charge-transfer by local and semi-local density functional approximations as well as inaccurate binding energies. It is ...
We introduce an improvement to the Hubbard U augmented density functional approach known as DFT+U that incorporates variations in the value of self-consistently calculated, linear-response U with changes in geometry. This approach overcomes the one major s ...