Publication

Pedestrian localization, tracking and behavior analysis from multiple cameras

Jérôme Berclaz
2010
EPFL thesis
Abstract

Video surveillance is currently undergoing a rapid growth. However, while thousands of cameras are being installed in public places all over the world, computer programs that could reliably detect and track people in order to analyze their behavior are not yet operational. Challenges are numerous, ranging from low image quality, suboptimal scene lighting, changing appearances of pedestrians, occlusions with environment and between people, complex interacting trajectories in crowds, etc. In this thesis, we propose a complete approach for detecting and tracking an unknown number of interacting people from multiple cameras located at eye level. Our system works reliably in spite of significant occlusions and delivers metrically accurate trajectories for each tracked individual. Furthermore, we develop a method for representing the most common types of motion in a specific environment and learning them automatically from image data. We demonstrate that a generative model for detection can effectively handle occlusions in each time frame independently, even when the only data available comes from the output of a simple background subtraction algorithm and when the number of individuals is unknown a priori. We then advocate that multi-people tracking can be achieved by detecting people in individual frames and then linking detections across frames. We formulate the linking step as a problem of finding the most probable state of a hidden Markov process given the set of images and frame-independent detections. We first propose to solve this problem by optimizing trajectories independently with Dynamic Programming. In a second step, we reformulate the problem as a constrained flow optimization resulting in a convex problem that can be solved using standard Linear Programming techniques and is far simpler formally and algorithmically than existing techniques. We show that the particular structure of this framework lets us solve it equivalently using the k-shortest paths algorithm, which leads to a much faster optimization. Finally, we introduce a novel behavioral model to describe pedestrians motions, which is able to capture sophisticated motion patterns resulting from the mixture of different categories of random trajectories. Due to its simplicity, this model can be learned from video sequences in a totally unsupervised manner through an Expectation-Maximization procedure. We show that this behavior model can be used to make tracking systems more robust in ambiguous situations. Moreover, we demonstrate its ability to characterize and detect atypical individual motions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (44)
Behavior
Behavior (American English) or behaviour (British English) is the range of actions and mannerisms made by individuals, organisms, systems or artificial entities in some environment. These systems can include other systems or organisms as well as the inanimate physical environment. It is the computed response of the system or organism to various stimuli or inputs, whether internal or external, conscious or subconscious, overt or covert, and voluntary or involuntary.
Behaviorism
Behaviorism (also spelled behaviourism) is a systematic approach to understanding the behavior of humans and other animals. It assumes that behavior is either a reflex evoked by the pairing of certain antecedent stimuli in the environment, or a consequence of that individual's history, including especially reinforcement and punishment contingencies, together with the individual's current motivational state and controlling stimuli. Although behaviorists generally accept the important role of heredity in determining behavior, they focus primarily on environmental events.
Applied behavior analysis
Applied behavior analysis (ABA), also called behavioral engineering, is a psychological intervention that applies empirical approaches based upon the principles of respondent and operant conditioning to change behavior of social significance. It is the applied form of behavior analysis; the other two forms are radical behaviorism (or the philosophy of the science) and the experimental analysis of behavior (or basic experimental laboratory research).
Show more
Related publications (138)

MOD2IR: High-Performance Code Generation for a Biophysically Detailed Neuronal Simulation DSL

Felix Schürmann, Pramod Shivaji Kumbhar, Omar Awile, Ioannis Magkanaris

Advances in computational capabilities and large volumes of experimental data have established computer simulations of brain tissue models as an important pillar in modern neuroscience. Alongside, a variety of domain specific languages (DSLs) have been dev ...
ACM2023

Learning-based techniques for lensless reconstruction

Yohann Loïc Yann Perron

In this internship, I explore different optimization algorithms for lensless imaging. Lensless imaging is a new imaging technique that replaces the lens of a camera with a diffuser mask. This allows for simpler and cheaper camera hardware. However, the rec ...
2023

Person Retrieval in Surveillance Videos Via Deep Attribute Mining and Reasoning

Zhen Wei, Zhiye Wang, Peixia Li

Person retrieval largely relies on the appearance features of pedestrians. This task is rather more difficult in surveillance videos due to the limitations of extracting robust appearance features brought by the cross-view and cross-camera data with lower ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2021
Show more
Related MOOCs (32)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing
Digital Signal Processing is the branch of engineering that, in the space of just a few decades, has enabled unprecedented levels of interpersonal communication and of on-demand entertainment. By rewo
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.