Publication

Modulation of the glutamate-evoked release of arachidonic acid from mouse cortical neurons: involvement of a pH-sensitive membrane phospholipase A2

Pierre Magistretti, Luc Pellerin
1995
Journal paper
Abstract

Excitatory synaptic transmission is associated with changes in both extracellular and intracellular pH. Using mouse cortical neurons in primary cultures, we studied the sensitivity of glutamate-evoked release of 3H-arachidonic acid (3H-AA) to changes in extracellular pH (pHo) and related intracellular pH (pHi). As pHo was shifted from 7.2 to 7.8, the glutamate-evoked release of 3H-AA was enhanced by approximately threefold. The effect of alkaline pHo on the glutamate response was rapid, becoming significant within 2 min. 3H-AA release, evoked by both NMDA and kainate, was also enhanced by pHo alkalinization. NMDA- and kainate-induced increase in free intracellular Ca2+ was unaffected by changing pHo from 7.2 to 7.8, indicating that the receptor-induced Ca2+ influx is not responsible for the pHo sensitivity of the glutamate-evoked release of 3H-AA. Alkalinization of pHi obtained by incubating neurons in the presence of HCO3- or NH4 enhanced the glutamate-evoked release of 3H-AA, while pHi acidification obtained by blockade of Na+/H+ and Cl-/HCO3- exchangers decreased the glutamate response. Membrane-bound phospholipase A2 (mPLA2) activity was stimulated by Ca2+ in a pH-dependent manner, increasing its activity as pH was shifted from 7.2 to 7.8. This pH profile corresponds to the pH profile of the glutamate-, NMDA- and kainate-evoked release of 3H-AA. Taken together, these results indicate that the glutamate-evoked release of 3H-AA may be mediated by the pH-sensitive mPLA2. Since excitatory neurotransmission mediated by glutamate results in both pHo and pHi changes and since AA enhances glutamatergic neurotransmission at both pre- and postsynaptic levels, the data reported here reveals a possible molecular mechanism whereby glutamate can modulate its own signalling efficacy in a pH-dependent manner by regulating the release of AA.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.