Publication

Memory effects of ion-selective electrodes: Theory and computer simulation of the time-dependent potential response to multiple sample changes

Nico de Rooij
2009
Journal paper
Abstract

A straightforward theoretical description of the time-dependent response of ion-selective membrane electrodes to multiple sample changes is presented. The derivation makes use of an approximation for the ion fluxes in the membrane, and of the superposition of partial fluxes induced by the step-changes. The general theory allows for any number of samples and ions. It is applied for the analysis of memory effects that reflect the influence of preceding samples on subsequent measurements. Various phenomena are discussed, including super-, near-, or sub-Nernstian responses, shifts of apparent reference potentials, and potential dips with domains of reversed slopes. The theoretical results agree well with virtual experiments based on computer simulation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Membrane potential
Membrane potential (also transmembrane potential or membrane voltage) is the difference in electric potential between the interior and the exterior of a biological cell. That is, there is a difference in the energy required for electric charges to move from the internal to exterior cellular environments and vice versa, as long as there is no acquisition of kinetic energy or the production of radiation. The concentration gradients of the charges directly determine this energy requirement.
Sampling (statistics)
In statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a statistical population to estimate characteristics of the whole population. Statisticians attempt to collect samples that are representative of the population. Sampling has lower costs and faster data collection compared to recording data from the entire population, and thus, it can provide insights in cases where it is infeasible to measure an entire population.
Action potential
An action potential occurs when the membrane potential of a specific cell rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells, called excitable cells, which include neurons, muscle cells, and in some plant cells. Certain endocrine cells such as pancreatic beta cells, and certain cells of the anterior pituitary gland are also excitable cells.
Show more
Related publications (35)

High throughput wide field second harmonic imaging of giant unilamellar vesicles

Sylvie Roke, Maksim Eremchev, David Roesel, Pierre-Marc Jean Marie Dansette

Cell-sized giant unilamellar vesicles (GUVs) are an ideal tool for understanding lipid membrane structure and properties. Label-free spatiotemporal images of their membrane potential and structure would greatly aid the quantitative understanding of membran ...
AIP Publishing2023

Micro- or nanostructured optical element

Niels Quack, Dorian Giraud Herle

A micro- or nanostructured optical element (1) is proposed comprising: a membrane (3) with an array of holes (5), the membrane (3) comprising a membrane light wave facing surface; an array of pillars (7) sized and shaped such that a respective pillar (7) i ...
2023

Effects of thermal, mechanical, and electrostatic perturbations on lipid membrane hydration investigated by second harmonic imaging

Seonwoo Lee

Hydrated lipid bilayer membranes are crucial components of cells and organelles, serving as the outer boundary that separates the cellular components from the extracellular environment. Lipid membranes regulate their structures and functions by dynamically ...
EPFL2023
Show more
Related MOOCs (32)
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.