3-dimensional electrode patterning within a microfluidic channel using metal ion implantation
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We study the presence within the worm Caenorhabditis elegans (C. elegans) of a fluorescent strain of the worm's bacterial food (Escherichia coli (E. coli) OP50) during early adulthood. Use of a microfluidic chip based on a thin glass coverslip substrate al ...
The present disclosure relates to a microfluidic device comprising: a substrate; a culture chamber (130); a loading channel (170) in fluid communication with the culture chamber; at least one auxiliar channel (170-1, 5 170-2) extending from and in fluid co ...
This paper reports a novel miniaturized pseudo reference electrode (RE) design for biasing Ion Sensitive Field Effect Transistors (ISFETs). It eliminates the need for post-CMOS processing and can scale up in numbers with the CMOS scaling. The presented des ...
Microfluidic models are proving to be powerful systems to study fundamental processes in porous media, due to their ability to replicate topologically complex environments while allowing detailed, quantitative observations at the pore scale. Yet, while por ...
Understanding the transport, dispersion and deposition of microorganisms in porous media is a complex scientific task comprising topics as diverse as hydrodynamics, ecology and environmental engineering. Modeling bacterial transport in porous environments ...
Microfluidics and microtechnologies are of great interest for biological applications. This interest is linked to the fact that microtechnologies enable the study of single cells at the cellular and sub-cellular level. One of many applications of such sing ...
During the last decade, the development of optofluidic chips has become a large field of research. The integration of nano and microstructures with microfluidics layers allowed for the miniaturisation of a number of tools traditionally used in laboratories ...
Nature and technical applications abound with thin viscous flows, ranging from the lava flow on volcanoes to the lubricating layer around confined bubbles in the microchannels of Lab-on-a-Chip devices. Countless are the examples where coating flows arise i ...
Fast and label-free techniques to analyze viruses and bacteria are of crucial interest in biological and bio-medical applications. For this purpose, optofluidic systems based on the integration of photonic structures with microfluidic layers were shown to ...
C. elegans is an attractive model organism in biology, as it shows genetic similarity with humans, facilitates microscopic observation due to its transparency, and has a short life cycle. Moreover, many mutants expressing fluorescent proteins in particular ...