Cellular mechanisms of brain energy metabolism: relevance to functional brain imaging and to neurodegenerative disorders
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The energy demands of the brain are high: they account for at least 20% of the body's energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expre ...
Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-calle ...
Brain energy consumption is high and a very tightly regulated energy metabolism ensures correct performance. Neurons, the cells responsible for transmitting information via synapses, interact very closely with star shaped glial cells called astrocytes. Ast ...
Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have ...
There is compelling evidence that glutamate can act as a cotransmitter in the mammalian brain. Interestingly, the third vesicular glutamate transporter (VGLUT3) is primarily found in neurons that were anticipated to be nonglutamatergic. Whereas the functio ...
Glucose, the main energy substrate used in the CNS, is continuously supplied by the periphery. Glutamate, the major excitatory neurotransmitter, is foreseen as a complementary energy contributor in the brain. In particular, astrocytes actively take up glut ...
A palladium-catalyzed cyclizative cross-coupling of two o-alkynylanilines to 2,3’-bisindoles under aerobic oxidative conditions was developed. Mechanistic studies suggested that the two catalytic cycles, namely the formation of 3-alkynylindoles 8 and their ...
Astrocytes play active roles in brain physiology by dynamic interactions with neurons. Connexin 30, one of the two main astroglial gap-junction subunits, is thought to be involved in behavioral and basic cognitive processes. However, the underlying cellula ...
In vivo multi-target and selective concentration monitoring of neurotransmitters can help to unravel the brain chemical complex signaling interplay. This paper presents a dedicated integrated potentiostat transducer circuit and its selective electrode inte ...
Since the first compartmentalized neuronal culture described by Robert B. Campenot in 1977, compartmentalized microfluidic devices have been widely used to engineer the cellular environment for cell culture. In previous research by Dr. Anja Kunze, a microf ...