Acoustic Models for Posterior Features in Speech Recognition
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We introduce a sequence-dependent coarse-grain model of double-stranded DNA with an explicit description of both the bases and the phosphate groups as interacting rigid-bodies. The model parameters are trained on extensive, state-of-the-art large scale mol ...
We consider the problem of parameter estimation in a Bayesian setting and propose a general lower-bound that includes part of the family of f-Divergences. The results are then applied to specific settings of interest and compared to other notable results i ...
In this work, we connect the problem of bounding the expected generalisation error with transportation-cost inequalities. Exposing the underlying pattern behind both approaches we are able to generalise them and go beyond Kullback- Leibler Divergences/Mutu ...
Deep neural networks have been empirically successful in a variety of tasks, however their theoretical understanding is still poor. In particular, modern deep neural networks have many more parameters than training data. Thus, in principle they should over ...
Maximum-Entropy Distributions offer an attractive family of probability densities suitable for moment closure problems. Yet finding the Lagrange multipliers which parametrize these distributions, turns out to be a computational bottleneck for practical clo ...
In i-vector based speaker recognition systems, back-end classifiers are trained to factor out nuisance information and retain only the speaker identity. As a result, variabilities arising due to gender, language and accent ( among many others) are suppress ...
Neural Network (NN) classifiers can assign extreme probabilities to samples that have not appeared during training (out-of-distribution samples) resulting in erroneous and unreliable predictions. One of the causes for this unwanted behaviour lies in the us ...
In i-vector based speaker recognition systems, back-end classifiers are trained to factor out nuisance information and retain only the speaker identity. As a result, variabilities arising due to gender, language and accent ( among many others) are suppress ...
Maximum-Entropy Distributions offer an attractive family of probability densities suitable for moment closure problems. Yet finding the Lagrange multipliers which parametrize these distributions, turns out to be a computational bottleneck for practical clo ...
Accurate measurement-data interpretation leads to increased understanding of structural behavior and enhanced asset-management decision making. In this paper, four data-interpretation methodologies, residual minimization, traditional Bayesian model updatin ...