Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Online learning with streaming data in a distributed and collaborative manner can be useful in a wide range of applications. This topic has been receiving considerable attention in recent years with emphasis on both single-task and multitask scenarios. In ...
This paper presents a series of tests that were performed on a state-of-the-art real-time automatic speech recognition system for English, in a single-computer implementation. As the intention is to use the system for speech-based query-free document retri ...
Our brain continuously self-organizes to construct and maintain an internal representation of the world based on the information arriving through sensory stimuli. Remarkably, cortical areas related to different sensory modalities appear to share the same f ...
For a long time, natural language processing (NLP) has relied on generative models with task specific and manually engineered features. Recently, there has been a resurgence of interest for neural networks in the machine learning community, obtaining state ...
Graphs are a prevalent tool in data science, as they model the inherent structure of the data. They have been used successfully in unsupervised and semi-supervised learning. Typically they are constructed either by connecting nearest samples, or by learnin ...
Unsupervised template induction over email data is a central component in applications such as information extraction, document classification, and auto-reply. The benefits of automatically generating such templates are known for structured data, e.g. mach ...
Word embedding is a feature learning technique which aims at mapping words from a vocabulary into vectors of real numbers in a low-dimensional space. By leveraging large corpora of unlabeled text, such continuous space representations can be computed for c ...
In the last decade, online social networks have enabled people to interact in many ways with each other and with content. The digital traces of such actions reveal people's preferences towards online content such as news or products. These traces often res ...
Content-based image retrieval aims at substituting traditional indexing based on manual annotation by using automatically-extracted visual indexing features. Novel techniques are needed however to efficiently deal with the semantic gap (i.e. the partial ma ...
Machine learning (ML) models may be deemed confidential due to their sensitive training data, commercial value, or use in security applications. Increasingly often, confidential ML models are being deployed with publicly accessible query interfaces. ML-as- ...