Publication

In-Context Phone Posteriors as Complementary Features for Tandem ASR

Hervé Bourlard, Hamed Ketabdar
2008
Conference paper
Abstract

In this paper, we present a method for integrating possible prior knowledge (such as phonetic and lexical knowledge), as well as acoustic context (e.g., the whole utterance) in the phone posterior estimation, and we propose to use the obtained posteriors as complementary posterior features in Tandem ASR configuration. These posteriors are estimated based on HMM state posterior probability definition (typically used in standard HMMs training). In this way, by integrating the appropriate prior knowledge and context, we enhance the estimation of phone posteriors. These new posteriors are called ?in-context? or HMM posteriors. We combine these posteriors as complementary evidences with the posteriors estimated from a Multi Layer Percep- tron (MLP), and use the combined evidence as features for training and inference in Tandem configuration. This approach has improved the performance, as compared to using only MLP estimated posteriors as features in Tandem, on OGI Numbers , Conversational Telephone speech (CTS), and Wall Street Journal (WSJ) databases.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.