Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We consider the problem of reconstructing a function from a finite set of noise-corrupted samples. Two kernel algorithms are analyzed, namely kernel ridge regression and epsilon-support vector regression. By assuming the ground-truth function belongs to th ...
Atypical aspects in speech concern speech that deviates from what is commonly considered normal or healthy. In this thesis, we propose novel methods for detection and analysis of these aspects, e.g. to monitor the temporary state of a speaker, diseases tha ...
In this paper we revisit the kernel density estimation problem: given a kernel K(x, y) and a dataset of n points in high dimensional Euclidean space, prepare a data structure that can quickly output, given a query q, a (1 + epsilon)-approximation to mu := ...
At initialization, artificial neural networks (ANNs) are equivalent to Gaussian processes in the infinite-width limit [12, 9], thus connecting them to kernel methods. We prove that the evolution of an ANN during training can also be described by a kernel: ...
Automatic speech recognition (ASR) systems, through use of the phoneme as an intermediary unit representation, split the problem of modeling the relationship between the written form, i.e., the text and the acoustic speech signal into two disjoint processe ...
State-of-the-art phoneme sequence recognition systems are based on hybrid hidden Markov model/artificial neural networks (HMM/ANN) framework. In this framework, the local classifier, ANN, is typically trained using Viterbi expectation-maximization algorith ...
Random Fourier features (RFFs) provide a promising way for kernel learning in a spectral case. Current RFFs-based kernel learning methods usually work in a two-stage way. In the first-stage process, learn-ing an optimal feature map is often formulated as a ...
Kernel methods are fundamental tools in machine learning that allow detection of non-linear dependencies between data without explicitly constructing feature vectors in high dimensional spaces. A major disadvantage of kernel methods is their poor scalabili ...
There has been increasing interest in applying learning algorithms to improve the dexterity of myoelectric prostheses. In this work, we present a large-scale benchmark evaluation on the second iteration of the publicly released NinaPro database, which cont ...
Random binning features, introduced in the seminal paper of Rahimi and Recht '07, are an efficient method for approximating a kernel matrix using locality sensitive hashing. Random binning features provide a very simple and efficient way to approximate the ...