Using more informative posterior probabilities for speech recognition
Related publications (37)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Audio segmentation, in general, is the task of segmenting a continuous audio stream in terms of acoustically homogenous regions, where the rule of homogeneity depends on the task. This thesis aims at developing and investigating efficient, robust and unsup ...
Local state (or phone) posterior probabilities are often investigated as local classifiers (e.g., hybrid HMM/ANN systems) or as transformed acoustic features (e.g., ``Tandem'') towards improved speech recognition systems. In this paper, we present initial ...
This paper investigates a new approach to perform simultaneous speech and speaker recognition. The likelihood estimated by a speaker identification system is combined with the posterior probability estimated by the speech recognizer. So, the joint posterio ...
In this paper, we present initial results towards boosting posterior based speech recognition systems by estimating more informative posteriors using multiple streams of features and taking into account acoustic context (e.g., as available in the whole utt ...
Local state or phone posterior probabilities are often investigated as local scores (e.g., hybrid HMM/ANN systems) or as transformed acoustic features (e.g., ``Tandem'') to improve speech recogni tion systems. In this paper, we present initial results towa ...
Audio segmentation, in general, is the task of segmenting a continuous audio stream in terms of acoustically homogenous regions, where the rule of homogeneity depends on the task. This thesis aims at developing and investigating efficient, robust and unsup ...
Local state or phone posterior probabilities are often investigated as local scores (e.g., hybrid HMM/ANN systems) or as transformed acoustic features (e.g., ``Tandem'') to improve speech recogni tion systems. In this paper, we present initial results towa ...
In a previous paper on speech recognition, we showed that templates can better capture the dynamics of speech signal compared to parametric models such as hidden Markov models. The key point in template matching approaches is finding the most similar templ ...
The paper presents an alternative approach to automatic recognition of speech in which each targeted word is classified by a separate binary classifier against all other sounds. No time alignment is done. To build a recognizer for N words, N parallel binar ...
This paper investigates a new approach to perform simultaneous speech and speaker recognition. The likelihood estimated by a speaker identification system is combined with the posterior probability estimated by the speech recognizer. So, the joint posterio ...