Publication

Identifying unexpected words using in-context and out-of-context phoneme posteriors

Hynek Hermansky, Hamed Ketabdar
2006
Report or working paper
Abstract

The paper proposes and discusses a machine approach for identification of unexpected (zero or low probability) words. The approach is based on use of two parallel recognition channels, one channel employing sensory information from the speech signal together with a prior context information provided by the pronunciation dictionary and grammatical constraints, to estimate in-context' posterior probabilities of phonemes, the other channel being independent of the context information and entirely driven by the sensory data to deliver estimates of out-of-context' posterior probabilities of phonemes. A significant mismatch between the information from these two channels indicates unexpected word. The viability of this concept is demonstrated on identification of out-of-vocabulary digits in continuous digit streams. The comparison of these two channels provides a confidence measure on the output of the recognizer. Unlike conventional confidence measures, this measure is not relying on phone and word segmentation (boundary detection), thus it is not affected by possibly imperfect segment boundary detection. In addition, being a relative measure, it is more discriminative than the conventional posterior based measures.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.