Threshold Selection for Unsupervised Detection, with an Application to Microphone Arrays
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Modern neuroscience research is generating increasingly large datasets, from recording thousands of neurons over long timescales to behavioral recordings of animals spanning weeks, months, or even years. Despite a great variety in recording setups and expe ...
Supervised machine learning models are receiving increasing attention in electricity theft detection due to their high detection accuracy. However, their performance depends on a massive amount of labeled training data, which comes from time-consuming and ...
Algorithms are now routinely used to make consequential decisions that affect human lives. Examples include college admissions, medical interventions or law enforcement. While algorithms empower us to harness all information hidden in vast amounts of data, ...
Language independent query-by-example spoken term detection (QbE-STD) is the problem of retrieving audio documents from an archive, which contain a spoken query provided by a user. This is usually casted as a hypothesis testing and pattern matching problem ...
Non-parametric probabilistic classification models are increasingly being investigated as an
alternative to Discrete Choice Models (DCMs), e.g. for predicting mode choice. There exist many strategies within the literature for model selection between DCMs, ...
Over the past few years, there have been fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. The amount of annotated data drastically increased and supervised deep discriminative models exceed ...
State-of-the-art object detection and segmentation methods for microscopy images rely on supervised machine learning, which requires laborious manual annotation of training data. Here we present a self-supervised method based on time arrow prediction pre-t ...
The Internet of Things creates opportunities to develop data-driven design methodologies for smart cities. However, effects rather than causes are often measured in complex urban systems, requiring robust data-interpretation methodologies. Additionally, ef ...
Neuromorphic systems provide brain-inspired methods of computing. In a neuromorphic architecture, inputs are processed by a network of neurons receiving operands through synaptic interconnections, tuned in the process of learning. Neurons act simultaneousl ...
Detecting lexical entailment plays a fundamental role in a variety of natural language processing tasks and is key to language understanding. Unsupervised methods still play an important role due to the lack of coverage of lexical databases in some domains ...