Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Contextual information is important for sequence modeling. Hidden Markov Models (HMMs) and extensions, which have been widely used for sequence modeling, make simplifying, often unrealistic assumptions on the conditional independence of observations given ...
In this paper, we discuss a family of new Automatic Speech Recognition (ASR) approaches, which somewhat deviate from the usual ASR approaches but which have recently been shown to be more robust to nonstationary noise, without requiring specific adaptation ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
Automatic speech recognition (ASR) is a very challenging problem due to the wide variety of the data that it must be able to deal with. Being the standard tool for ASR, hidden Markov models (HMMs) have proven to work well for ASR when there are controls ov ...
Contextual information is important for sequence modeling. Hidden Markov Models (HMMs) and extensions, which have been widely used for sequence modeling, make simplifying, often unrealistic assumptions on the conditional independence of observations given ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
For classification problems, it is important that the classifier is trained with data which is likely to appear in the future. Discriminative models, because of their nature to focus on the boundary between classes rather than data itself, usually do not h ...
In this paper, we present a new approach towards high performance speech/music discrimination on realistic tasks related to the automatic transcription of broadcast news. In the approach presented here, the (local) Probability Density Function (PDF) estima ...
Automatic speech recognition (ASR) is a very challenging problem due to the wide variety of the data that it must be able to deal with. Being the standard tool for ASR, hidden Markov models (HMMs) have proven to work well for ASR when there are controls ov ...