Robustness of Phase based Features for Speaker Recognition
Related publications (49)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The speech signal conveys information on different time scales from short (20–40 ms) time scale or segmental, associated to phonological and phonetic information to long (150–250 ms) time scale or supra segmental, associated to syllabic and prosodic inform ...
The speech signal conveys information on different time scales from short (20--40 ms) time scale or segmental, associated to phonological and phonetic information to long (150--250 ms) time scale or supra segmental, associated to syllabic and prosodic info ...
The speech signal conveys information on different time scales from short (20--40 ms) time scale or segmental, associated to phonological and phonetic information to long (150--250 ms) time scale or supra segmental, associated to syllabic and prosodic info ...
Speaker diarization is the task of identifying “who spoke when” in an audio stream containing multiple speakers. This is an unsupervised task as there is no a priori information about the speakers. Diagnostical studies on state-of-the-art diarization syste ...
In this paper, we propose a platform based on phonological speech vocoding for examining relations between phonology and speech processing, and in broader terms, between the abstract and physical structures of speech signal. The goal of this paper is to go ...
We address the classical problem of delta feature computation, and interpret the operation involved in terms of Savitzky-Golay (SG) filtering. Features such as the mel-frequency cepstral coefficients (MFCCs), obtained based on short-time spectra of the spe ...
The advent of statistical parametric speech synthesis has paved new ways to a unified framework for hidden Markov model (HMM) based text to speech synthesis (TTS) and automatic speech recognition (ASR). The techniques and advancements made in the field of ...
Ecole Polytechnique Federale de Lausanne (EPFL)2012
In the last decade, i-vector and Joint Factor Analysis (JFA) approaches to speaker modeling have become ubiquitous in the area of automatic speaker recognition. Both of these techniques involve the computation of posterior probabilities, using either Gauss ...
The integration of audio and visual information improves speech recognition performance, specially in the presence of noise. In these circumstances it is necessary to introduce audio and visual weights to control the contribution of each modality to the re ...
In this thesis, methods and models are developed and presented aiming at the estimation, restoration and transformation of the characteristics of human speech. During a first period of the thesis, a concept was developed that allows restoring prosodic voic ...