Measuring the Performance of Face Localization Systems
Related publications (57)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Face localization is the process of finding the exact position of a face in a given image. This can be useful in several applications such as face tracking or person authentication. The purpose of this paper is to show that the error made during the locali ...
Face localization is the process of finding the exact position of a face in a given image. This can be useful in several applications such as face tracking or person authentication. The purpose of this paper is to show that the error made during the locali ...
In much of the literature devoted to face recognition, experiments are performed with controlled images (e.g. manual face localization, controlled lighting, background and pose); however, a practical recognition system has to be robust to more challenging ...
The purpose of Face localization is to determine the coordinates of a face in a given image. It is a fundamental research area in computer vision because it serves, as a necessary first step, any face processing systems, such as automatic face recognition, ...
It has been previously demonstrated that systems based on local features and relatively complex statistical models, namely 1D Hidden Markov Models (HMMs) and pseudo-2D HMMs, are suitable for face recognition. Recently, a simpler statistical model, namely t ...
This report addresses the problem of locating facial features in images of frontal faces taken under different lighting conditions. The well-known Active Shape Model method proposed by Cootes {\it et al.} is extended in order to improve its robustness to i ...
This paper addresses the problem of locating facial features in images of frontal faces taken under different lighting conditions. The well-known Active Shape Model method proposed by Cootes {\it et al.} is extended to improve its robustness to illuminatio ...
Detecting faces in images is a key step in numerous computer vision applications as face recognition for example. Face detection is a difficult task in image analysis because of the large face intra-class variability which is due to the important influence ...
In this report, we address the problem of face verification across illumination, since it has been identified as one of the major factor degrading the performance of face recognition systems. First, a brief overview of face recognition together with its ma ...
Statistical pattern recognition occupies a central place in the general context of machine learning techniques, as it provides the theoretical insights and the practical means for solving a variety of problems ranging from character recognition to face rec ...