Machine Learning Approaches to Text Representation using Unlabeled Data
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In the past few years, Machine Learning (ML) techniques have ushered in a paradigm shift, allowing the harnessing of ever more abundant sources of data to automate complex tasks. The technical workhorse behind these important breakthroughs arguably lies in ...
Modern neuroscience research is generating increasingly large datasets, from recording thousands of neurons over long timescales to behavioral recordings of animals spanning weeks, months, or even years. Despite a great variety in recording setups and expe ...
Current transformer-based skeletal action recognition models tend to focus on a limited set of joints and low-level motion patterns to predict action classes. This results in significant performance degradation under small skeleton perturbations or changin ...
Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
End-to-end learning methods like deep neural networks have been the driving force in the remarkable progress of machine learning in recent years. However, despite their success, the deployment process of such networks in safety-critical use cases, such as ...
Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
This study presents a self-supervised Bayesian Neural Network (BNN) framework using air-borne Acoustic Emission (AE) to identify different Laser Powder Bed Fusion (LPBF) process regimes such as Lack of Fusion, conduction mode, and keyhole without ground-tr ...
Metal-organic frameworks (MOFs) are a class of crystalline porous materials that exhibit a vast chemical space owing to their tunable molecular building blocks with diverse topologies. An unlimited number of MOFs can, in principle, be synthesized. Machine ...
Due to its empirical success on few shot classification and reinforcement learning, meta-learning recently received a lot of interest. Meta-learning leverages data from previous tasks to quickly learn a new task, despite limited data. In particular, model ...
Mapping the technology landscape is crucial for market actors to take informed investment decisions. However, given the large amount of data on the Web and its subsequent information overload, manually retrieving information is a seemingly ineffective and ...