Transient State Monitoring by Total Internal Reflection Fluorescence Microscopy
Related publications (152)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Fluorescence microscopy techniques are well established research tools and have proven their use in a large variety of biomedical applications. Microscopic molecular contrast is achieved by imaging fluorescent dyes that bind specifically to a molecule of i ...
Single-molecule Forster resonance energy transfer (FRET) and photoinduced electron transfer (PET) have developed into versatile and complementary methods for probing distances and dynamics in biomolecules. Here we show that the two methods can be combined ...
Since the pioneering work of Hirschfeld, it is known that time-integrated emission (TiEm) of a fluorophore is independent of fluorescence quantum yield and illumination intensity. Practical implementation of this important result for determining exact prob ...
Natural and synthetic purine derivatives such as caffeine, theophylline, 6-mercaptopurine and 8-chlorotheophylline are important drugs. Due to the structural similarity of these compounds, it is intrinsically difficult to prepare chemosensors for their sel ...
One of the most prominent self-labeling tags is SNAP-tag. It is an in vitro evolution product of the human DNA repair protein O 6-alkylguanine-DNA alkyltransferase (hAGT) that reacts specifically with benzylguanine (BG) and benzylchloropyrimidine (CP) deri ...
With the advent of single-molecule localization microscopy (SMLM) techniques, intracellular proteins can be imaged at unprecedented resolution with high specificity and contrast. These techniques can lead to a better understanding of cell functioning, as t ...
The SNAP-tag labeling technology provides a simple, robust, and versatile approach to the imaging of fusion proteins for a wide range of experimental applications. Owing to the specific and covalent nature of the labeling reaction, SNAP-tag is well suited ...
The assembly process of the human immunodeficiency virus 1 (HIV-1) is driven by the viral polyprotein Gag. Fluorescence imaging of Gag protein fusions is widely performed and has revealed important information on viral assembly. Gag fusion proteins are com ...
Prodigiosin-like pigments or prodiginines (PdGs) are promising drugs owing to their reported antitumor, antibiotic, and immunosuppressive activities. These natural compounds are produced by several bacteria, including Streptomyces coelicolor and Serratia m ...
For decades chemists have focused on increasing the brightness of fluorophores. In super-resolution microscopy, however, fluorophores that preferentially exist in a non-fluorescent state, but occasionally re-arrange into a fluorescent form, can give better ...