Large-eddy simulation of the stable atmospheric boundary layer using dynamic models with different averaging schemes
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
River and open-channel flows are free surface boundary layer flows with complex 3D, large-scale, turbulent structures. The study of 2D and 3D large-scale turbulent flow structures is a great challenge for physicists, mathematicians and engineers from such ...
Phenomena such as large-scale shear, buoyancy, and the proximity to the ground surface significantly affect interactions among scales in atmospheric boundary layer turbulent flows. Hence, these phenomena impact parameters that enter subgrid-scale (SGS) par ...
Pseudospectral methods are frequently used in the horizontal directions in large-eddy simulation of atmospheric flows. However, the same approach often creates unphysical oscillations for scalar fields if there are horizontal heterogeneities in the sources ...
Modeling air pollutant transport and dispersion in urban environments is especially challenging due to complex ground topography. In this study, we describe a large eddy simulation (LES) tool including a new dynamic subgrid closure and boundary treatment t ...
The accuracy of large-eddy simulations (LESs) of the atmospheric boundary layer (ABL) over complex terrain relies on the ability of the subgrid-scale (SGS) models to capture the effect of subgrid turbulent fluxes on the resolved fields of velocity and scal ...
In large-eddy simulations of atmospheric boundary layer turbulence, the lumped coefficient in the eddy-diffusion subgrid-scale (SGS) model is known to depend on scale for the case of inert scalars. This scale dependence is predominant near the surface. In ...
Particle transport in atmospheric boundary layer turbulence is simulated using Lagrangian Stochastic Models (LSM) coupled with a Large Eddy Simulation (LES) model of atmospheric boundary layer flow. The aim of this work is to improve the accuracy of transp ...
Large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow is performed over a homogeneous surface with different heat flux forcings. The goal is to test the performance of dynamic subgrid-scale models in a numerical framework and to compare the ...
A new tuning-free subgrid-scale model, termed locally averaged scale-dependent dynamic ( LASDD) model, is developed and implemented in large-eddy simulations ( LES) of stable boundary layers. The new model dynamically computes the Smagorinsky coefficient a ...
An important challenge in large-eddy simulations of the atmospheric boundary layer is the specification of the subgrid-scale (SGS) model coefficient(s) and, in particular, how to account for factors such as position in the flow, grid/filter scale and atmos ...