Effect of roughness on surface boundary conditions for large-eddy simulation
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The parameterization of the atmospheric boundary layer is crucial for accurate numerical weather predictions. Over heterogeneous terrain, several open challenges remain regarding the growth of internal boundary layers, the determination of mixing layer hei ...
We perform large-eddy simulations of neutral atmospheric boundary-layer flow over a cluster of buildings surrounded by relatively flat terrain. The first investigated question is the effect of the level of building detail that can be included in the numeri ...
Laboratory column experiments involving steady flow in homogeneous soil are often analyzed assuming that the flow is spatially uniform in any plane transverse to the longitudinal axis aligned with the column centerline. Axisymmetric steady flow in such a c ...
River and open-channel flows are free surface boundary layer flows with complex 3D, large-scale, turbulent structures. The study of 2D and 3D large-scale turbulent flow structures is a great challenge for physicists, mathematicians and engineers from such ...
A wind-tunnel experiment was designed and carried out to study the effect of a surface roughness transition on subfilter-scale (SFS) physics in a turbulent boundary layer. Specifically, subfilter-scale stresses are evaluated that require parameterizations ...
Accurate microscale windfields computations over complex topography is crucial to many particle transport models but remains a challenging task. The objective of this work focuses on the numerical simulations of micro-scale windfields over the steep Gauder ...
The parameterization of the atmospheric boundary layer is essential for accurate numerical weather predictions. The near-surface values of air temperature or wind speed for instance are highly dependent on the complex land – atmosphere interactions over he ...
A scale-dependent dynamic subgrid model based on Lagrangian time averaging is proposed and tested in large eddy simulations sLESd of high-Reynolds number boundary layer flows over homogeneous and heterogeneous rough surfaces. The model is based on the Lagr ...
A simulation of a diurnal cycle of atmospheric boundary layer (ABL) flow over a homogeneous terrain is performed using large-eddy simulation (LES) with the Lagrangian scale-dependent dynamic subgrid-scale model. The surface boundary condition is derived fr ...
Turbulent properties of the surface layer of stratified lakes have been quantified from temperature microstructure measurements made during convective conditions. Large eddy simulations have been performed using corresponding surface boundary conditions. W ...