Publication

A dynamic similarity subgrid model for chemical transformations in large-eddy simulation of the atmospheric boundary layer

Fernando Porté Agel
2005
Journal paper
Abstract

In large-eddy simulations (LESs) of atmospheric reacting flows, homogeneous and instantaneous mixing of reactants within a grid-cell is usually assumed. However, highly reactive species are often segregated or pre-mixed at small scales. In this paper, we propose a parameterization to account for the effect of the unresolved scales on the chemical transformations. Its formulation relies on the description of the subgrid unresolved reactant covariance as a function of the resolved covariance by using scale-similarity arguments. A dynamic procedure is used to compute the model coefficient from the resolved reactant concentration fields, therefore not requiring any parameter specification or tuning. In simulations of a convective boundary layer with a fast second-order reaction, using the new model is found to perform better than ignoring subgrid chemistry effects.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.