A scale-dependent dynamic model for scalar transport in large-eddy simulations of the atmospheric boundary layer
Related publications (46)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Turbulent boundary-layer flows over complex topography have been extensively studied in the atmospheric sciences and wind engineering communities. The upwind turbulence level, the atmospheric thermal stability and the shape of the topography as well as sur ...
Thermally driven slope flows are ubiquitous in nature and play a major role in regulating local microclimates in valleys, glaciers and ice-sheets. They control in large part surface momentum, heat and moisture fluxes, and their effects must therefore be ac ...
A dynamic procedure is developed to compute the model coefficients in the recently introduced modulated gradient models for both momentum and scalar fluxes. The magnitudes of the subgrid-scale (SGS) stress and the SGS flux are estimated using the local equ ...
A dynamic procedure is developed to compute the model coefficients in the recently introduced modulated gradient models for both momentum and scalar fluxes. The magnitudes of the subgrid-scale (SGS) stress and the SGS flux are estimated using the local equ ...
We present an intercomparison of three subgrid-scale (SGS) models for large-eddy simulation (LES) of katabatic flows. The SGS closures we study include the Smagorinsky formulation, a scale-invariant dynamic model, and a scale-dependent dynamic model. Downs ...
As a simple alternative to the standard eddy-diffusivity closure, a nonlinear subgrid-scale (SGS) flux model is introduced and implemented in simulations of a neutral atmospheric boundary layer and a stable atmospheric boundary layer. The new model compute ...
In nuclear safety, most severe accident scenarios lead to the presence of fission products in aerosol form in the closed containment atmosphere. It is important to understand the particle depletion process to estimate the risk of a release of radioactivity ...
Recent advances in boundary-layer meteorology are beginning to allow the study of atmospheric flow phenomena that have previously been poorly understood. In this dissertation, we study the effects of complex terrain and unsteady regimes on the atmospheric ...
Large-eddy simulation (LES) is used to simulate stably-stratified turbulent boundary-layer flow over a steep two-dimensional hill. To parametrise the subgrid-scale (SGS) fluxes of heat and momentum, three different types of SGS models are tested: (a) the S ...
In nuclear safety, some severe accident scenarios lead to the presence of fission products in aerosol form in the closed containment atmosphere. It is important to understand the particle depletion process to estimate the risk of a release of radioactivity ...