Asymptotic theory (statistics)In statistics, asymptotic theory, or large sample theory, is a framework for assessing properties of estimators and statistical tests. Within this framework, it is often assumed that the sample size n may grow indefinitely; the properties of estimators and tests are then evaluated under the limit of n → ∞. In practice, a limit evaluation is considered to be approximately valid for large finite sample sizes too. Most statistical problems begin with a dataset of size n.
External validityExternal validity is the validity of applying the conclusions of a scientific study outside the context of that study. In other words, it is the extent to which the results of a study can be generalized to and across other situations, people, stimuli, and times. In contrast, internal validity is the validity of conclusions drawn within the context of a particular study. Because general conclusions are almost always a goal in research, external validity is an important property of any study.
Compound probability distributionIn probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables. If the parameter is a scale parameter, the resulting mixture is also called a scale mixture.
EstimatorIn statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. For example, the sample mean is a commonly used estimator of the population mean. There are point and interval estimators. The point estimators yield single-valued results. This is in contrast to an interval estimator, where the result would be a range of plausible values.
Statistical inferenceStatistical inference is the process of using data analysis to infer properties of an underlying distribution of probability. Inferential statistical analysis infers properties of a population, for example by testing hypotheses and deriving estimates. It is assumed that the observed data set is sampled from a larger population. Inferential statistics can be contrasted with descriptive statistics. Descriptive statistics is solely concerned with properties of the observed data, and it does not rest on the assumption that the data come from a larger population.
Internal validityInternal validity is the extent to which a piece of evidence supports a claim about cause and effect, within the context of a particular study. It is one of the most important properties of scientific studies and is an important concept in reasoning about evidence more generally. Internal validity is determined by how well a study can rule out alternative explanations for its findings (usually, sources of systematic error or 'bias').
Criterion validityIn psychometrics, criterion validity, or criterion-related validity, is the extent to which an operationalization of a construct, such as a test, relates to, or predicts, a theoretical representation of the construct—the criterion. Criterion validity is often divided into concurrent and predictive validity based on the timing of measurement for the "predictor" and outcome. Concurrent validity refers to a comparison between the measure in question and an outcome assessed at the same time.
Ecological validityIn the behavioral sciences, ecological validity is often used to refer to the judgment of whether a given study's variables and conclusions (often collected in lab) are sufficiently relevant to its population (e.g. the "real world" context). Psychological studies are usually conducted in laboratories though the goal of these studies is to understand human behavior in the real-world. Ideally, an experiment would have generalizable results that predict behavior outside of the lab, thus having more ecological validity.
Predictive validityIn psychometrics, predictive validity is the extent to which a score on a scale or test predicts scores on some criterion measure. For example, the validity of a cognitive test for job performance is the correlation between test scores and, for example, supervisor performance ratings. Such a cognitive test would have predictive validity if the observed correlation were statistically significant. Predictive validity shares similarities with concurrent validity in that both are generally measured as correlations between a test and some criterion measure.
Language modelA language model is a probabilistic model of a natural language that can generate probabilities of a series of words, based on text corpora in one or multiple languages it was trained on. Large language models, as their most advanced form, are a combination of feedforward neural networks and transformers. They have superseded recurrent neural network-based models, which had previously superseded the pure statistical models, such as word n-gram language model.