**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Modélisation, analyse mathématique et simulation numérique de la dynamique des glaciers

Abstract

We address the free boundary problem that consists in finding the shape of a three dimensional glacier over a given period and under given climatic conditions. Glacier surface moves by sliding, internal shear and external exchange of mass. Ice is modelled as a non Newtonian fluid. Given the shape of the glacier, the velocity of ice is obtained by solving a stationary non-linear Stokes problem with a sliding law along the bedrock-ice interface. The shape of the glacier is updated by computing a Volume Of Fluid (VOF) function, which satisfies a transport equation. Climatic effects (accumulation and ablation of ice) are taken into account in the source term of this equation. A decoupling algorithm with a two-grid method allows the velocity of ice and the VOF to be computed using different numerical techniques, such that a Finite Element Method (FEM) and a characteristics method. On a theoretical level, we prove the well-posedness of the non-linear Stokes problem. A priori estimates for the convergence of the FEM are established by using a quasi-norm technique. Eventually, convergence of the linearisation schemes, such that a fixed point method and a Newton method, is proved. Several applications demonstrate the potential of the numerical method to simulate the motion of a glacier during a long period. The first one consists in the simulation of Rhone et Aletsch glacier from 1880 to 2100 by using climatic data provided by glaciologists. The glacier reconstructions over the last 120 years are validated against measurements. Afterwards, several different climatic scenarios are investigated in order to predict the shape the glaciers until 2100. A dramatic retreat during the 21st century is anticipated for both glaciers. The second application is an inverse problem. It aims to find a climate parametrization allowing a glacier to fit some of its moraines. Two other aspects of glaciology are also addressed in this thesis. The first one consists in modeling and in simulating ice collapse during the calving process. The previous ice flow model is supplemented by a Damage variable which describes the presence of micro crack in ice. An additional numerical scheme allows the Damage field to be solved and a two dimensional simulation of calving to be performed. The second problem aims to prove the existence of stationary ice sheet when considering shallow ice model and a simplified geometry. Numerical investigation confirms the theoretical result and shows physical properties of the solution.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related concepts (25)

Related publications (121)

Finite element method

The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the tr

Computer simulation

Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliabi

Continuity equation

A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be g

Loading

Loading

Loading

We present a numerical model for the simulation of 3D mono-dispersed sediment dynamics in a Newtonian flow with free surfaces. The physical model is a macroscopic model for the transport of sediment based on a sediment concentration with a single momentum balance equation for the mixture (fluid and sediments).
The model proposed here couples the Navier-Stokes equations, with a
volume-of-fluid (VOF) approach for the tracking of the free surfaces between the liquid
and the air, plus a nonlinear advection equation for the sediments (for the transport, deposition, and resuspension of sediments).
The numerical algorithm relies on a splitting approach to decouple diffusion and advection phenomena such that we are left with a Stokes operator, an advection operator, and deposition/resuspension operators.
For the space discretization, a two-grid method couples a finite element discretization for the resolution of the Stokes problem, and a finer structured grid of small cells for the discretization of the advection operator and the sediment deposition/resuspension operator.
SLIC, redistribution, and decompression algorithms are used for post-processing to limit numerical diffusion and correct the numerical compression of the volume fraction of liquid.
The numerical model is validated through numerical experiments.
We validate and benchmark the model with deposition effects only for some specific experiments, in particular erosion experiments. Then, we validate and benchmark the model in which we introduce resuspension effects. After that, we discuss the limitations of the underlying physical models.
Finally, we consider a one-dimensional diffusion-convection equation and study an error indicator for the design of adaptive algorithms. First, we consider a finite element backward scheme, and then, a splitting scheme that separates the diffusion and the convection parts of the equation.

The research work reported in the present dissertation is aimed at the analysis of complex physical phenomena involving instabilities and nonlinearities occurring in fluids through state-of-the-art numerical modeling. Solutions of intricate fluid physics problems are devised in two particularly arduous situations: fluid domains with moving boundaries and the high-Reynolds-number regime dominated by nonlinear convective effects. Shear-driven flows of incompressible Newtonian fluids enclosed in cavities of varying geometries are thoroughly investigated in the two following frameworks: transition with a free surface and confined turbulence. The physical system we consider is made of an incompressible Newtonian fluid filling a bounded, or partially bounded cavity. A series of shear-driven flows are easily generated by setting in motion some part of the container boundary. These driven-cavity flows are not only technologically important, they are of great scientific interest because they display almost all physical fluid phenomena that can possibly occur in incompressible flows, and this in the simplest geometrical settings. Thus corner eddies, secondary flows, longitudinal vortices, complex three-dimensional patterns, chaotic particle motions, nonuniqueness, transition, and turbulence all occur naturally and can be studied in the same geometry. This facilitates the comparison of results from experiments, analysis, and computation over the whole range of Reynolds numbers. The flows under consideration are part of a larger class of confined flows driven by linear or angular momentum gradients. This dissertation reports a detailed study of a novel numerical method developed for the simulation of an unsteady free-surface flow in three-space-dimensions. This method relies on a moving-grid technique to solve the Navier-Stokes equations expressed in the arbitrary Lagrangian-Eulerian (ALE) kinematics and discretized by the spectral element method. A comprehensive analysis of the continuous and discretized formulations of the general problem in the ALE frame, with nonlinear, non-homogeneous and unsteady boundary conditions is presented. In this dissertation, we first consider in the internal turbulent flow of a fluid enclosed in a bounded cubical cavity driven by the constant translation of its lid. The solution of this flow relied on large-eddy simulations, which served to improve our physical understanding of this complex flow dynamics. Subsequently, a novel subgrid model based on approximate deconvolution methods coupled with a dynamic mixed scale model was devised. The large-eddy simulation of the lid-driven cubical cavity flow based on this novel subgrid model has shown improvements over traditional subgrid-viscosity type of models. Finally a new interpretation of approximate deconvolution models when used with implicit filtering as a way to approximate the projective grid filter was given. This led to the introduction of the grid filter models. Through the use of a newly-developed method of numerical simulation, in this dissertation we solve unsteady flows with a flat and moving free-surface in the transitional regime. These flows are the incompressible flow of a viscous fluid enclosed in a cylindrical container with an open top surface and driven by the steady rotation of the bottom wall. New flow states are investigated based on the fully three-dimensional solution of the Navier-Stokes equations for these free-surface cylindrical swirling flows, without resorting to any symmetry properties unlike all other results available in the literature. To our knowledge, this study delivers the most general available results for this free-surface problem due to its original mathematical treatment. This second part of the dissertation is a basic research task directed at increasing our understanding of the influence of the presence of a free surface on the intricate transitional flow dynamics of shear-driven flows.

Alexandre Caboussat, Marco Picasso

A numerical method for the solution to the density-dependent incompressible Navier-Stokes equations modeling the flow of N immiscible incompressible liquid phases with a free surface is proposed. It allows to model the flow of an arbitrary number of liquid phases together with an additional vacuum phase separated with a free surface. It is based on a volume-of-fluid approach involving N indicator functions (one per phase, identified by its density) that guarantees mass conservation within each phase. An additional indicator function for the whole liquid domain allows to treat boundary conditions at the interface between the liquid domain and a vacuum. The system of partial differential equations is solved by implicit operator splitting at each time step: first, transport equations are solved by a forward characteristics method on a fine Cartesian grid to predict the new location of each liquid phase; second, a generalized Stokes problem with a density-dependent viscosity is solved with a FEM on a coarser mesh of the liquid domain. A novel algorithm ensuring the maximum principle and limiting the numerical diffusion for the transport of the N phases is validated on benchmark flows. Then, we focus on a novel application and compare the numerical and physical simulations of impulse waves, that is, waves generated at the free surface of a water basin initially at rest after the impact of a denser phase. A particularly useful application in hydraulic engineering is to predict the effects of a landslide-generated impulse wave in a reservoir. Copyright (c) 2014 John Wiley & Sons, Ltd.