Protein deacetylation by SIRT1: An emerging key post- translational modification in metabolic regulation
Related publications (44)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Reversible acetylation was initially described as an epigenetic mechanism regulating DNA accessibility. Since then, this process has emerged as a controller of histone and nonhistone acetylation that integrates key physiological processes such as metabolis ...
The metabolic activity of tumor cells is known to be higher as compared to that of normal cells, which has been previously exploited to deliver nanomedicines to highly metabolic tumor cells. Unfortunately, current strategies, which are mostly based on comp ...
Skeletal muscle composed of myofibers and a small amount of muscle stem cells (MuSCs). It plays important roles in energy metabolism. Some of the key metabolites, such as NAD+ and acetyl-CoA were recently found to regulate muscle and MuSCs function. Most o ...
Mitochondrial stress requires timely intervention to prevent mitochondria' and cellular dysfunction. Re-establishing the correct protein homeostasis is crucial for coping with mitochondria' stress and maintaining cellular homeostasis. The best-characterize ...
Chromatin is the template on which DNA-associated transactions take place in eukaryotic organisms. Nucleosomes consisting of the four histones H2A, H2B, H3 and H4 each organize ~150bp of DNA and constitute a first layer of chromatin. The three-dimensional ...
The invention relates to the in vitro and in cellulo detection of the cofactors nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). Provided is a sensor molecule for fluorescence or luminescence-based detection o ...
NAD+ has emerged as a central metabolic node and an important co-substrate for the activity of various enzymes, including the protein deacetylase SIRT1. Different strategies to increase NAD+ bioavailability have been shown to boost SIRT1 activity, which re ...
Lysine acetylation is a widespread posttranslational modification affecting many biological pathways. Recent studies indicate that acetylated lysine residues mainly exhibit low acetylation occupancy, but challenges in sample preparation and analysis make i ...
Introduction: In order to maintain metabolic homeostasis, organisms adjust the capacity and efficiency of ATP generation to changes in energetic demand and supply. While the transcriptional control of mitochondrial biogenesis allows to adapt mitochondrial ...
Discovered in the beginning of the 20(th) century, nicotinamide adenine dinucleotide (NAD(+)) has evolved from a simple oxidoreductase cofactor to being an essential cosubstrate for a wide range of regulatory proteins that include the sirtuin family of NAD ...