Publication

Novel Algorithms on Impulse Radio Ultra-WideBand Ranging

Abstract

We consider the problem of ranging with impulse radio (IR) ultra-wideband (UWB) radio under dense multipaths propagation environments and additive Gaussian noise. We propose a Bayesian detection algorithm where the prior distribution of the channel follows the IEEE 802.15.4a channel model, to identify whether the received signal is a Line-of-Sight (LOS) signal or a Non-Line-of-Sight (NLOS) signal. If it is a LOS signal, we use a Bayesian estimation approach to estimate the joint posterior probability density function (pdf) of the channel and the targeted distance. One of applications of the joint posterior pdf of the channel and the targeted distance is the ranging determination with classical posterior estimators (such as Minimum Mean Square Error Estimator (MMSE)). For computing the joint posterior pdf of the channel and the targeted distance, we derived a novel algorithm which is based on importance sampling and expectation maximum techniques. Numerical evaluations under the IEEE 802.15.4a channel model are presented to demonstrate the good performance of the proposed algorithms.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.