Publication

Diffusion-limited unbinding of small peptides from PDZ domains

Abstract

PDZ domains are typical examples of binding motifs mediating the formation of protein-protein assemblies in many different cells. A quantitative characterization of the mechanisms intertwining structure, chemistry, and dynamics with the PDZ function represent a challenge in molecular biology. Here, we investigated the influence of native state topology on the thermodynamics and dissociation kinetics for a PDZ/peptide complex via molecular dynamics simulations based on a coarse-grained description of PDZ domains. Our native-centric approach neglects chemical details but incorporates the basic structural information to reproduce the protein functional dynamics as it couples to binding. We found that at physiological temperatures the unbinding of a peptide from the PDZ domain becomes increasingly diffusive rather than thermally activated, as a consequence of the significant reduction of the free energy barrier with temperature. In turn, this results in a significant slowing down of the process of 2 orders of magnitude with respect to the conventional Arrhenius extrapolation from low-temperature calculations. Finally, a detailed analysis of a typical unbinding event based on the rupture times of single peptide-PDZ contacts allows us to shed further light on the dissociation mechanism and to elaborate a coherent picture of the relation between function and dynamics in PDZ domains.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.