Influence of the substrate on the spin-orbit splitting in surface alloys on (111) noble-metal surfaces
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this thesis we study the electronic structure of different two-dimensional (2D) electron systems with angular resolved photoemission spectroscopy (ARPES). This technique is based on the photoelectric effect and directly probes the electronic structure o ...
A giant spin splitting has been observed in surface alloys on noble metal (111) surfaces as a result of a strong structural modification at the surface as well as the large atomic spin-orbit interaction (SOI) of the alloy atoms. These surface alloys are an ...
The Bi/Ag(111), Pb/Ag(111), and Sb/Ag(111) surface alloys exhibit a two-dimensional band structure with a strongly enhanced Rashba-type spin splitting, which is in part attributed to the structural asymmetry resulting from an outward relaxation of the allo ...
We discuss two different approaches for tuning the giant spin-orbit splitting of a BiAg2 surface alloy. The first approach consists of electron doping by alkaline metal deposition in order to shift the energy position of the spin-split surface states, whil ...
Spin–orbit coupling (SOC) is an essential factor in photophysics of heavy transition metal com- plexes. By enabling efficient population of the lowest triplet state and its strong emission, it gives rise to a very interesting photophysical behavior and und ...
At the surface of a solid, quantum mechanics allows the existence of two-dimensional Bloch waves as solutions of the Schrödinger equation. These "surface" states are interesting both for fundamental and practical reasons, and have been extensively explored ...
The application of an external magnetic field can lift the spin degeneracy of electronic states through its interaction with the electronic magnetic moment. A closely-related phenomenon is the Rashba-Bychkov (RB) effect where symmetry breaking at surfaces ...
We investigate the interplay between the governing magnetic energy terms in patterned La0.7Sr0.3MnO3 (LSMO) elements by direct high-resolution x-ray magnetic microscopy as a function of temperature and geometrical parameters. We show that the magnetic conf ...
We report on the formation of a BiAg2/Ag/Si(1 1 1) trilayer system which exhibits a giant Rashba spin-splitting of its surface-localized states and is grown on a semiconducting substrate. Angle-resolved photoelectron spectroscopy (ARPES) results reveal the ...
The electronic band structure and Fermi surface of ZrTe3 was determined by angle-resolved photoemission spectroscopy. Several bands and a large part of the Fermi surface are found to be split by 100-200 meV into two parallel dispersions. Calculations of th ...