Effect of oxidation of cobalt-based nanowires on NMR spin-lattice relaxation
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This thesis presents combined experimental and theoretical investigations of nanoscale, surface-supported magnets based on rare earths (RE) to understand and control the magnetic properties down to the scale of single atoms. We present the effects of adato ...
Dynamic nuclear polarization (DNP) combined with high magnetic fields and fast magic angle spinning (MAS) has opened up a new avenue for the application of exceptionally sensitive 1H NMR detection schemes to study protonated solids. Recently, it has been s ...
This work focuses on obtaining a magnetic resonance imaging (MRI) signal representation that accounts for a longitudinal T-1 and transverse T-2* relaxations while at the same time integrating directional diffusion in the context of scattered multi-parametr ...
In the study of small molecule ligands and candidate macromolecular targets, water spins in long-lived association with macromolecules (proteins or nanoparticles) constitute a remarkable source of magneti-zation that can be exploited to reveal ligand-targe ...
Dissolution dynamic nuclear polarization (DNP) provides a way to tremendously improve the sensitivity of nuclear magnetic resonance experiments. Once the spins are hyperpolarized by dissolution DNP, the radicals used as polarizing agents become undesirable ...
Diamond magnetometry is a quantum sensing method involving detection of magnetic resonances with nanoscale resolution. For instance, T1 relaxation measurements, inspired by equivalent concepts in magnetic resonance imaging (MRI), provide a signal that is e ...
Coupling matter excitations to electromagnetic modes inside nano-scale optical resonators leads to the formation of hybrid light-matter states, so-called polaritons, allowing the controlled manipulation of material properties. Here, we investigate the phot ...
We report a novel crossover behavior in the long-range-ordered phase of a prototypical spin-1/2 Heisenberg antiferromagnetic ladder compound (C7H10N)(2)CuBr4. The staggered order was previously evidenced from a continuous and symmetric splitting of (NNMR)- ...
Nuclear Magnetic Resonance (NMR) is one of the most versatile techniques since it enables the characterization of solid, liquid and gaseous systems in a plethora of in-vitro and in-vivo experiments. Despite its multidisciplinary scope, it still suffers fro ...
Ligands able to complex two gadolinium ions have been synthesized and characterized in view of the ability of the complexes to increase the spin relaxation of water protons. All ligands are based on the heptadentate diethylenetriaminetetraacetic acid (DTTA ...