Ordinary differential equationIn mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives of those functions. The term "ordinary" is used in contrast with partial differential equations which may be with respect to one independent variable. A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form where a_0(x), .
Fourier transformIn physics and mathematics, the Fourier transform (FT) is a transform that converts a function into a form that describes the frequencies present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made the Fourier transform is sometimes called the frequency domain representation of the original function.
Laplace transformIn mathematics, the 'Laplace transform, named after its discoverer Pierre-Simon Laplace (ləˈplɑ:s), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex frequency domain, also known as s-domain', or s-plane). The transform has many applications in science and engineering because it is a tool for solving differential equations. In particular, it transforms ordinary differential equations into algebraic equations and convolution into multiplication.
Sign functionIn mathematics, the sign function or signum function (from signum, Latin for "sign") is a function that returns the sign of a real number. In mathematical notation the sign function is often represented as . The signum function of a real number is a piecewise function which is defined as follows: Any real number can be expressed as the product of its absolute value and its sign function: It follows that whenever is not equal to 0 we have Similarly, for any real number , We can also ascertain that: The signum function is the derivative of the absolute value function, up to (but not including) the indeterminacy at zero.
Inverse Laplace transformIn mathematics, the inverse Laplace transform of a function F(s) is the piecewise-continuous and exponentially-restricted real function f(t) which has the property: where denotes the Laplace transform. It can be proven that, if a function F(s) has the inverse Laplace transform f(t), then f(t) is uniquely determined (considering functions which differ from each other only on a point set having Lebesgue measure zero as the same). This result was first proven by Mathias Lerch in 1903 and is known as Lerch's theorem.
Stochastic differential equationA stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations. SDEs have a random differential that is in the most basic case random white noise calculated as the derivative of a Brownian motion or more generally a semimartingale.
Cell (biology)The cell is the basic structural and functional unit of all forms of life. Every cell consists of cytoplasm enclosed within a membrane, and contains many macromolecules such as proteins, DNA and RNA, as well as many small molecules of nutrients and metabolites. The term comes from the Latin word cellula meaning 'small room'. Cells can acquire specified function and carry out various tasks within the cell such as replication, DNA repair, protein synthesis, and motility. Cells are capable of specialization and mobility within the cell.
Plant cellPlant cells are the cells present in green plants, photosynthetic eukaryotes of the kingdom Plantae. Their distinctive features include primary cell walls containing cellulose, hemicelluloses and pectin, the presence of plastids with the capability to perform photosynthesis and store starch, a large vacuole that regulates turgor pressure, the absence of flagella or centrioles, except in the gametes, and a unique method of cell division involving the formation of a cell plate or phragmoplast that separates the new daughter cells.
FluorescenceFluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, than the absorbed radiation. A perceptible example of fluorescence occurs when the absorbed radiation is in the ultraviolet region of the electromagnetic spectrum (invisible to the human eye), while the emitted light is in the visible region; this gives the fluorescent substance a distinct color that can only be seen when the substance has been exposed to UV light.
Cell theoryIn biology, cell theory is a scientific theory first formulated in the mid-nineteenth century, that organisms are made up of cells, that they are the basic structural/organizational unit of all organisms, and that all cells come from pre-existing cells. Cells are the basic unit of structure in all organisms and also the basic unit of reproduction. The three tenets of the cell theory are: All organisms are composed of one or more cells. The cell is the basic unit of structure and organization in organisms.