Numerical stabilityIn the mathematical subfield of numerical analysis, numerical stability is a generally desirable property of numerical algorithms. The precise definition of stability depends on the context. One is numerical linear algebra and the other is algorithms for solving ordinary and partial differential equations by discrete approximation. In numerical linear algebra, the principal concern is instabilities caused by proximity to singularities of various kinds, such as very small or nearly colliding eigenvalues.
Compact operatorIn functional analysis, a branch of mathematics, a compact operator is a linear operator , where are normed vector spaces, with the property that maps bounded subsets of to relatively compact subsets of (subsets with compact closure in ). Such an operator is necessarily a bounded operator, and so continuous. Some authors require that are Banach, but the definition can be extended to more general spaces. Any bounded operator that has finite rank is a compact operator; indeed, the class of compact operators is a natural generalization of the class of finite-rank operators in an infinite-dimensional setting.
Event (particle physics)In particle physics, an event refers to the results just after a fundamental interaction takes place between subatomic particles, occurring in a very short time span, at a well-localized region of space. Because of the uncertainty principle, an event in particle physics does not have quite the same meaning as it does in the theory of relativity, in which an "event" is a point in spacetime which can be known exactly, i.e., a spacetime coordinate.
Numerical methodIn numerical analysis, a numerical method is a mathematical tool designed to solve numerical problems. The implementation of a numerical method with an appropriate convergence check in a programming language is called a numerical algorithm. Let be a well-posed problem, i.e. is a real or complex functional relationship, defined on the cross-product of an input data set and an output data set , such that exists a locally lipschitz function called resolvent, which has the property that for every root of , .
Differential operatorIn mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function (in the style of a higher-order function in computer science). This article considers mainly linear differential operators, which are the most common type. However, non-linear differential operators also exist, such as the Schwarzian derivative.
Bounded operatorIn functional analysis and operator theory, a bounded linear operator is a linear transformation between topological vector spaces (TVSs) and that maps bounded subsets of to bounded subsets of If and are normed vector spaces (a special type of TVS), then is bounded if and only if there exists some such that for all The smallest such is called the operator norm of and denoted by A bounded operator between normed spaces is continuous and vice versa. The concept of a bounded linear operator has been extended from normed spaces to all topological vector spaces.
Theoretical physicsTheoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.
Sequence spaceIn functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural numbers to the field K of real or complex numbers. The set of all such functions is naturally identified with the set of all possible infinite sequences with elements in K, and can be turned into a vector space under the operations of pointwise addition of functions and pointwise scalar multiplication.
Virtual particleA virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle. The concept of virtual particles arises in the perturbation theory of quantum field theory where interactions between ordinary particles are described in terms of exchanges of virtual particles. A process involving virtual particles can be described by a schematic representation known as a Feynman diagram, in which virtual particles are represented by internal lines.
Closure operatorIn mathematics, a closure operator on a set S is a function from the power set of S to itself that satisfies the following conditions for all sets {| border="0" |- | | (cl is extensive), |- | | (cl is increasing), |- | | (cl is idempotent). |} Closure operators are determined by their closed sets, i.e., by the sets of the form cl(X), since the closure cl(X) of a set X is the smallest closed set containing X. Such families of "closed sets" are sometimes called closure systems or "Moore families".