Oz (programming language)Oz is a multiparadigm programming language, developed in the Programming Systems Lab at Université catholique de Louvain, for programming language education. It has a canonical textbook: Concepts, Techniques, and Models of Computer Programming. Oz was first designed by Gert Smolka and his students in 1991. In 1996, development of Oz continued in cooperation with the research group of Seif Haridi and Peter Van Roy at the Swedish Institute of Computer Science.
Pure type systemNOTOC In the branches of mathematical logic known as proof theory and type theory, a pure type system (PTS), previously known as a generalized type system (GTS), is a form of typed lambda calculus that allows an arbitrary number of sorts and dependencies between any of these. The framework can be seen as a generalisation of Barendregt's lambda cube, in the sense that all corners of the cube can be represented as instances of a PTS with just two sorts. In fact, Barendregt (1991) framed his cube in this setting.
Type safetyIn computer science, type safety and type soundness are the extent to which a programming language discourages or prevents type errors. Type safety is sometimes alternatively considered to be a property of facilities of a computer language; that is, some facilities are type-safe and their usage will not result in type errors, while other facilities in the same language may be type-unsafe and a program using them may encounter type errors.
LoanwordA loanword (also a loan word, loan-word, or borrowing) is a word at least partly assimilated from one language (the donor language) into another language (the recipient language, also called the target language). This is in contrast to cognates, which are words in two or more languages that are similar because they share an etymological origin; and calques, which involve translation. Loanwords from languages with different scripts are usually transliterated (between scripts), but they are not translated.
Foundations of mathematicsFoundations of mathematics is the study of the philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathematics. In this latter sense, the distinction between foundations of mathematics and philosophy of mathematics turns out to be vague. Foundations of mathematics can be conceived as the study of the basic mathematical concepts (set, function, geometrical figure, number, etc.
Strong and weak typingIn computer programming, one of the many ways that programming languages are colloquially classified is whether the language's type system makes it strongly typed or weakly typed (loosely typed). However, there is no precise technical definition of what the terms mean and different authors disagree about the implied meaning of the terms and the relative rankings of the "strength" of the type systems of mainstream programming languages.
New FoundationsIn mathematical logic, New Foundations (NF) is an axiomatic set theory, conceived by Willard Van Orman Quine as a simplification of the theory of types of Principia Mathematica. Quine first proposed NF in a 1937 article titled "New Foundations for Mathematical Logic"; hence the name. Much of this entry discusses NF with urelements (NFU), an important variant of NF due to Jensen and clarified by Holmes. In 1940 and in a revision in 1951, Quine introduced an extension of NF sometimes called "Mathematical Logic" or "ML", that included proper classes as well as sets.
Object copyingIn object-oriented programming, object copying is creating a copy of an existing object, a unit of data in object-oriented programming. The resulting object is called an object copy or simply copy of the original object. Copying is basic but has subtleties and can have significant overhead. There are several ways to copy an object, most commonly by a copy constructor or cloning. Copying is done mostly so the copy can be modified or moved, or the current value preserved.
Covariance and contravariance (computer science)Many programming language type systems support subtyping. For instance, if the type is a subtype of , then an expression of type should be substitutable wherever an expression of type is used. Variance is how subtyping between more complex types relates to subtyping between their components. For example, how should a list of s relate to a list of s? Or how should a function that returns relate to a function that returns ? Depending on the variance of the type constructor, the subtyping relation of the simple types may be either preserved, reversed, or ignored for the respective complex types.
Generalized algebraic data typeIn functional programming, a generalized algebraic data type (GADT, also first-class phantom type, guarded recursive datatype, or equality-qualified type) is a generalization of parametric algebraic data types. In a GADT, the product constructors (called data constructors in Haskell) can provide an explicit instantiation of the ADT as the type instantiation of their return value. This allows defining functions with a more advanced type behaviour.