Optimization of microfluidic single cell trapping for long-term on-chip culture
Related publications (55)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Stem cell therapies hold tremendous potential for tissue and organ regeneration. Yet, there remains significant need for better ex vivo culture and manipulation methods. On the one hand, many tissue-specific stem cells cannot be propagated without causing ...
Hematopoietic stem cells (HSCs) are responsible for life-long production of all mature blood cells. This unique characteristic makes them an ideal candidate for cell-based therapies to treat various hematological malignancies. Their extensive use in the cl ...
This protocol describes a versatile microfluidic method to generate tethered protein gradients of virtually any user-defined shape on biomimetic hydrogel substrates. It can be applied to test, in a microenvironment of physiologically relevant stiffness, ho ...
The in vitro expansion of hematopoietic stem cells (HSC) for clinical applications is hampered by a rapid loss of HSC blood reconstitution capability in culture. While these rare cells can be stimulated to massively proliferate, cell divisions mostly resul ...
Imprinted genes and neural stem cells (NSC) play an important role in the developing and mature brain. A central theme of imprinted gene function in NSCs is cell survival and G1 arrest to control cell division, cell-cycle exit, migration and differentiatio ...
How cells grow and divide is a question that was raised more than 100 years ago. Despite years of research and in-depth knowledge of several molecular mechanisms, the complete system that regulates and coordinates both of those activities within Schizosacc ...
Microfluidic gradient systems offer a very precise means to probe the response of cells to graded biomolecular signals in vitro, for example to model how morphogen proteins affect cell fate during developmental processes. However, existing gradient makers ...
An improved internal gelation approach is developed to encapsulate single mammalian cells in monodisperse alginate microbeads as small as 26 mu m in diameter and at rates of up to 1 kHz with high cell viability. The cell damage resulting from contact with ...
Object tracking in image sequences is a key challenge in computer vision. Its goal is to follow objects that move or evolve over time while preserving the identity of each object. However, most existing approaches focus on one class of objects and model on ...
A micrometer-sized affinity bead (red) is (i) taken up into a cell by phagocytosis, (ii) photochemically released from phagosomes, (iii) optically trapped by the cell, and (iv) isolated by cell lysis for subsequent analysis of captured intracellular analyt ...