Publication

Hyper-DEMIX: Blind Source Separation of Hyperspectral Images Using Local ML Estimates

2010
Conference paper
Abstract

We propose a new method to unmix hyperspectral images. Our method exploits the structure of the material abundance maps by assuming that in some regions of the spatial dimension, only one material is present. Such regions provide a local estimate of the endmember spectrum of the corresponding material. Our main contribution is a new clustering algorithm called Hyper-DEMIX to estimate the endmember spectrum of each material based on such local estimates. The abundance map of each material is then recovered with a binary masking technique. Experimental results over noisy hyperspectral images show the effectiveness of the proposed approach.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.