Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We study various aspects of stochastic partial differential equations driven by Lévy white noise. This driving noise, which is a generalization of Gaussian white noise, can be viewed either as a generalized random process or as an independently scattered r ...
Modeling wave propagation in highly heterogeneous media is of prime importance in engineering applications of diverse nature such as seismic inversion, medical imaging or the design of composite materials. The numerical approximation of such multiscale phy ...
In this work, we focus on the Dynamical Low Rank (DLR) approximation of PDEs equations with random parameters. This can be interpreted as a reduced basis method, where the approximate solution is expanded in separable form over a set of few deterministic b ...
Although our work lies in the field of random processes, this thesis was originally motivated by signal processing applications, mainly the stochastic modeling of sparse signals. We develop a mathematical study of the innovation model, under which a signal ...
A novel probabilistic numerical method for quantifying the uncertainty induced by the time integration of ordinary differential equations (ODEs) is introduced. Departing from the classical strategy to randomize ODE solvers by adding a random forcing term, ...
We explore the effect of precisely defined geometric imperfections on the buckling load of spherical shells under external pressure loading, using finite-element analysis that was previously validated through precision experiments. Our numerical simulation ...
We consider the initial value problem for the inviscid Primitive and Boussinesq equations in three spatial dimensions. We recast both systems as an abstract Euler-type system and apply the methods of convex integration of De Lellis and Sz,kelyhidi to show ...
The numerical solution of partial differential equations (PDEs) depending on para- metrized or random input data is computationally intensive. Reduced order modeling techniques, such as the reduced basis methods, have been developed to alleviate this compu ...
The objective of this thesis is to develop efficient numerical schemes to successfully tackle problems arising from the study of groundwater flows in a porous saturated medium; we deal therefore with partial differential equations(PDE) having random coeffi ...
We study the homogenization problem for the system of equations of dynamics of a mixture of liquid crystals with random structure. We consider a simplified form of the Ericksen-Leslie equations for an incompressible medium with inhomogeneous density with r ...