Making Action Recognition Robust to Occlusions and Viewpoint Changes
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Overlapping speech is a source of significant errors in speaker diarization of spontaneous meeting recordings. Recent works on speaker diarization have attempted to solve the problem of overlap detection using classifiers trained on acoustic and spatial fe ...
This thesis proposes a novel unified boosting framework. We apply this framework to the several face processing tasks, face detection, facial feature localisation, and pose classification, and use the same boosting algorithm and the same pool of features ( ...
EPFL2012
The sliding window approach is the most widely used technique to detect objects from an image. In the past few years, classifiers have been improved in many ways to increase the scanning speed. Apart from the classifier design (such as the cascade), the sc ...
Activity recognition systems based on body-worn motion sensors suffer from a decrease in performance during the deployment and run-time phases, because of probable changes in the sensors (e.g. displacement or rotatation), which is the case in many real-lif ...
In real-world classification problems, nuisance variables can cause wild variability in the data. Nuisance corresponds for example to geometric distortions of the image, occlusions, illumination changes or any other deformations that do not alter the groun ...
2016
,
Invariance to geometric transformations is a highly desirable property of automatic classifiers in many image recognition tasks. Nevertheless, it is unclear to which extent state-of-the-art classifiers are invariant to basic transformations such as rotatio ...
2015
, , ,
Activity recognition systems based on body-worn motion sensors suffer from a decrease in performance during the deployment and run-time phases, because of probable changes in the sensors (e.g. displacement or rotation), which is the case in many real-life ...
2013
,
The sliding window approach is the most widely used technique to detect an object from an image. In the past few years, classifiers have been improved in many ways to increase the scanning speed. Apart from the classifier design (such as the cascade), the ...
Academic Press Inc Elsevier Science2013
Fully automated machine learning methods based on structural magnetic resonance imaging data can assist radiologists in the diagnosis of Alzheimer's disease (AD). These algorithms require large data sets to learn the separation of subjects with and without ...
Elsevier2011
The sliding window approach is the most widely used technique to detect objects from an image. In the past few years, classifiers have been improved in many ways to increase the scanning speed. Apart from the classifier design (such as the cascade), the sc ...