Publication

Factoring by electronic mail

Arjen Lenstra
1990
Conference paper
Abstract

Describes a distributed implementation of two factoring algorithms, the elliptic curve method (ECM) and the multiple polynomial quadratic sieve algorithm (MPQS). The authors' ECM-implementation on a network of DEC MicroVAX processors has factored several numbers from the Cunningham project. The authors have also implemented the multiple polynomial quadratic sieve algorithm on the same network. On this network alone, they are now able to factor any 100 digit integer, or to find 35 digit factors of numbers up to 150 digits long within one month. To allow an even wider distribution of their programs they made use of electronic mail networks for the distribution of the programs and for inter-processor communication. Even during the initial stage of this experiment, machines all over the United States and at various places in Europe and Australia contributed 15 percent of the total factorization effort. At all the sites where the program is running, the authors only use cycles that would otherwise have been idle. This shows that the enormous computational task of factoring 100 digit integers with the current algorithms can be completed almost for free. Since they use a negligible fraction of the idle cycles of all the machines on the worldwide electronic mail networks, the authors could factor 100 digit integers within a few days with a little more help

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (40)
Quadratic sieve
The quadratic sieve algorithm (QS) is an integer factorization algorithm and, in practice, the second fastest method known (after the general number field sieve). It is still the fastest for integers under 100 decimal digits or so, and is considerably simpler than the number field sieve. It is a general-purpose factorization algorithm, meaning that its running time depends solely on the size of the integer to be factored, and not on special structure or properties.
Integer factorization
In number theory, integer factorization is the decomposition, when possible, of a positive integer into a product of smaller integers. If the factors are further restricted to be prime numbers, the process is called prime factorization, and includes the test whether the given integer is prime (in this case, one has a "product" of a single factor). When the numbers are sufficiently large, no efficient non-quantum integer factorization algorithm is known. However, it has not been proven that such an algorithm does not exist.
Shor's algorithm
Shor's algorithm is a quantum algorithm for finding the prime factors of an integer. It was developed in 1994 by the American mathematician Peter Shor. It is one of the few known quantum algorithms with compelling potential applications and strong evidence of superpolynomial speedup compared to best known classical (that is, non-quantum) algorithms. On the other hand, factoring numbers of practical significance requires far more qubits than available in the near future.
Show more
Related publications (35)

Results on Sparse Integer Programming and Geometric Independent Sets

Jana Tabea Cslovjecsek

An integer linear program is a problem of the form max{c^T x : Ax=b, x >= 0, x integer}, where A is in Z^(n x m), b in Z^m, and c in Z^n.Solving an integer linear program is NP-hard in general, but there are several assumptions for which it becomes fixed p ...
EPFL2023

Approximation Algorithms for Allocation and Network Design

Etienne Michel François Bamas

In this thesis, we give new approximation algorithms for some NP-hard problems arising in resource allocation and network design. As a resource allocation problem, we study the Santa Claus problem (also known as the MaxMin Fair Allocation problem) in which ...
EPFL2023

The double exponential runtime is tight for 2-stage stochastic ILPs

Kim-Manuel Klein, Klaus Jansen, Alexandra Anna Lassota

We consider fundamental algorithmic number theoretic problems and their relation to a class of block structured Integer Linear Programs (ILPs) called 2-stage stochastic. A 2-stage stochastic ILP is an integer program of the form min{c(T)x vertical bar Ax = ...
SPRINGER HEIDELBERG2022
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.