On the trajectory method for the reconstruction of differential equations from time series
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Using a variational method, we prove the existence of heteroclinic solutions for a 6-dimensional system of ordinary differential equations. We derive this system from the classical Benard-Rayleigh problem near the convective instability threshold. The cons ...
We prove global in time well-posedness for perturbations of the 2D stochastic Navier-Stokes equations partial derivative( t)u + u center dot del u = Delta u - del p + sigma + xi, u(0, center dot ) = u(0),div (u) = 0, driven by additive space-time white noi ...
Stabilized Runge???Kutta methods are especially efficient for the numerical solution of large systems of stiff nonlinear differential equations because they are fully explicit. For semi-discrete parabolic problems, for instance, stabilized Runge???Kutta me ...
In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
This article considers solving an overdetermined system of linear equations in peer-to-peer multiagent networks. The network is assumed to be synchronous and strongly connected. Each agent has a set of local data points, and their goal is to compute a line ...
Predicting the evolution of systems with spatio-temporal dynamics in response to external stimuli is essential for scientific progress. Traditional equations-based approaches leverage first principles through the numerical approximation of differential equ ...
We introduce the "continuized" Nesterov acceleration, a close variant of Nesterov acceleration whose variables are indexed by a continuous time parameter. The two variables continuously mix following a linear ordinary differential equation and take gradien ...
We study the compact support property for solutions of the following stochastic partial differential equations: partial derivative tu=aijuxixj(t,x)+biuxi(t,x)+cu+h(t,x,u(t,x))F-center dot(t,x),(t,x)is an element of(0,infinity)xRd,where F-center dot is a sp ...
Self-healing slip pulses are major spatiotemporal failure modes of frictional systems, featuring a characteristic size L(t) and a propagation velocity c(p)(t) (t is time). Here, we develop a theory of slip pulses in realistic rate- and state-dependent fric ...
This paper proposes an algorithm to upper-bound maximal quantile statistics of a state function over the course of a Stochastic Differential Equation (SDE) system execution. This chance-peak problem is posed as a nonconvex program aiming to maximize the Va ...