Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Cholesterol plays an important role in regulating the properties of phospholipid membranes. To obtain a detailed understanding of the lipid–cholesterol interactions, we have developed a mesoscopic water–lipid–cholesterol model. In this model, we take ...
The relative stability of cholesterol in cellular membranes and the thermodynamics of fluctuations from equilibrium have important consequences for sterol trafficking and lateral domain formation. We used molecular dynamics computer simulations to investig ...
We show that a two-step process, involving spontaneous self-assembly of lipids and apolipoproteins and surface patterning, produces single, supported lipid bilayers over two discrete and independently adjustable length scales. Specifically, an aqueous phas ...
Compartmentalization is a defining feature of eukaryotic cells that allows the spatial segregation of different functions, such as protein and lipid synthesis, and ensures their fidelity and efficiency. This imposes the need for an intense flux of metaboli ...
We describe an optical method capable of tracking a single fluorescent molecule with a flexible choice of high spatial accuracy (~10–20 nm standard deviation or ~20–40 nm full-width-at-half-maximum) and temporal resolution (< 1 ms). The fluorescence signal ...
Many approaches have been developed to characterize the heterogeneity of membranes in living cells. In this study, the elastic properties of specific membrane domains in living cells are characterized by atomic force microscopy. Our data reveal the existen ...
The plasma membrane defines the boundary of every living cell, and its integrity is essential for life. The plasma membrane may, however, be challenged by mechanical stress or pore-forming proteins produced by the organism itself or invading pathogens. We ...
The study of molecular dynamics at the single-molecule level with fluorescence correlation spectroscopy (FCS) and far-field optics has contributed greatly to the functional understanding of complex systems. Unfortunately, such studies are restricted to len ...
Institute of Physics (IoP) and Deutsche Physikalische Gesellschaft2009
Nanoscale objects are typically internalized by cells into membrane-bounded endosomes and fail to access the cytosolic cell machinery. Whereas some biomacromolecules may penetrate or fuse with cell membranes without overt membrane disruption, no synthetic ...
Phosphoinositides are involved in a large number of processes in cells and it is very demanding to study individual protein-lipid interactions in vivo due to their rapid turnover and involvement in simultaneous events. Supported lipid bilayers (SLBs) conta ...