Freshly isolated muscle stem cells (MuSCs) exhibit robust regenerative capacity in vivo that is rapidly lost in culture. Using a bioengineered substrate to recapitulate key biophysical and biochemical niche features in conjunction with a novel highly automated single cell tracking algorithm, we show that substrate elasticity is a potent regulator of MuSC fate in culture. Unlike MuSCs on rigid plastic dishes (~10(6) kPa), MuSCs cultured on soft hydrogel substrates that mimic the elasticity of muscle (12 kPa) self-renew in vitro and contribute extensively to muscle regeneration when subsequently transplanted into mice and assayed histologically and quantitatively by noninvasive bioluminescence imaging. Our studies provide novel evidence that by recapitulating physiological tissue rigidity, propagation of adult muscle stem cells is possible, enabling future cell-based therapies for muscle wasting diseases.
Johan Auwerx, Xiaoxu Li, Tanes Imamura de Lima, Keno Strotjohann, Alessia De Masi
Johan Auwerx, Olivier Burri, Xiaoxu Li, Tanes Imamura de Lima, Giacomo Vincenzo Giorgio Von Alvensleben, Martin Rainer Wohlwend, Pirkka-Pekka Untamo Laurila, Ludger Jan Elzuë Goeminne, Barbara Moreira Crisol, Amélia Lalou, Renata Mangione