This paper's focus is the following family of problems, denoted k-ECSS, where k denotes a positive integer: given a graph (V, E) and costs for each edge, find a minimum-cost subset F of E such that (V, F) is k-edge-connected. For k=1 it is the spanning tree problem which is in P; for every other k it is APX-hard and has a 2-approximation. Moreover, assuming P != NP, it is known that for unit costs, the best possible approximation ratio is 1 + Theta(1/k) for k>1. Our first main result is to determine the analogous asymptotic ratio for general costs: we show there is a constant eps>0 so that for all k>1, finding a (1+eps)-approximation for k-ECSS is NP-hard. Thus we establish a gap between the unit-cost and general-cost versions, for large enough k. Next, we consider the multi-subgraph cousin of k-ECSS, in which we are allowed to buy arbitrarily many copies of any edges (i.e., F is now a multi-subset of E, with parallel copies having the same cost as the original edge). Not so much is known about this natural variant, but we conjecture that a (1 + Theta(1/k))-approximation algorithm exists, and we describe an approach based on its naive linear programming relaxation (LP) and graph decompositions. The LP is well-known --- it is essentially the same as the Held-Karp TSP and the undirected LP for Steiner tree --- and in order to further our understanding, we give a family of extreme points for this LP with exponentially bad fractionality.
Nikolaos Geroliminis, Claudia Bongiovanni, Mor Kaspi
Volkan Cevher, Grigorios Chrysos, Efstratios Panteleimon Skoulakis
Robert West, Maxime Jean Julien Peyrard, Marija Sakota