Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Efficient learning from massive amounts of information is a hot topic in computer vision. Available training sets contain many examples with several visual descriptors, a setting in which current batch approaches are typically slow and does not scale well. In this work we introduce a theo- retically motivated and efficient online learning algorithm for the Multi Kernel Learning (MKL) problem. For this algorithm we prove a theoretical bound on the number of multiclass mistakes made on any arbitrary data sequence. Moreover, we empirically show that its performance is on par, or better, than standard batch MKL (e.g. SILP, Sim- pleMKL) algorithms.
Volkan Cevher, Efstratios Panteleimon Skoulakis, Luca Viano, Ali Kavis